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Propagation of noise acoustic beams at high Reynolds numbers is investigated theoretically and
experimentally. From a mathematical point of view the problem of describing the spread of
noise is reduced to finding the statistical characteristics of solutions of Burgers equation.
Narrow-band input noise field can be regarded as quasi-monochromatic signal with random
amplitude and phase modulation. Away from radiator the field represents the sequence of
shocks with the universal behaviour between shocks. The positions of the shocks and their
amplitude and, hence, the statistical characteristics of the waves are determined by the
fluctuations of the phase of the initial wave. It is shown that at large distances the field spectrum
has the universal structure defined by the initial wave statistics. The nonlinear interaction leads
to the initiation of new harmonics, the width of which increases with the number of harmonics,
and a continuous power spectrum is formed at high frequencies. The evolution of noise
intensive acoustic beams at high Reynolds numbers with narrowband spectrum inlet is
experimentally studied (signal with central frequency 2 MHz and with an initial amplitude P
about 1 MPa). Experiments were carried out using measuring complex Ultrasound Measurement
System Control Centre by Precision Acoustics. The details are investigated of the spatial and
temporal structure of the acoustic beams at high Reynolds numbers and the spectral content of
the field is analyzed up to the fortieth harmonic of radiation source. It is shown experimentally
the appearance of universal high-frequency asymptotic behaviour.
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1. Introduction

Interest to studying the propagation of intense acoustic noise is sufficiently keen, for example,
the studies of noise created by the modern-aircraft engines in the audio-frequency range are very
topical [1-4]. Description of propagation of intense noise is usually based on solving the Burgers
equation, which was proposed by J.M.Burgers as a model equation of hydrodynamic turbulence.
Random fields satisfying this equation are called the Burgers turbulence and even Burgulence [5] or
acoustic turbulence as applied to evolution of intense acoustic noise. Many works (e.g., see the
references in the monographs and reviews [5-13]) are dedicated to the studies of the statistical
characteristics of intense acoustic noise and Burgers turbulence. The laboratory experiments include
the studies of harmonic oscillation by the noise quasi-monochromatic signal at the initial stage [14]
and intense-noise propagation in pipes [15-17].

The studies presented in this work deal with propagation of intense ultrasonic noise beams in
fluid for large Reynolds numbers. The results of analytical calculation of the spectra of the noise
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narrowband signals at the stage of the developed discontinuities are given along with the results of
the experimental study of evolution of noise acoustic beams.

2. Evolution of the plane quasi-monochromatic waves

Currently, the most exhaustive description of propagation of an intense acoustic field in the
paraxial approximation can be obtained within the framework of the Khokhlov--Zabolotskaya--
Kuznetsov (KZK) equation [6, 18]. However, the solution of this equation, especially for complex
initial and boundary conditions, is sought numerically and usually lacks proper physical
demonstrativeness. Therefore, to ensure a high-quality consideration of the peculiarities of
evolution of the quasi-periodic signals, we consider the one-dimensional Burgers equation:
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When writing (1), the following dimensionless variables are used:
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Here, p is the acoustic pressure, x is the coordinate along the beam axis, and 7 is the time in
the coordinate system moving together with the wave with the sound velocity ¢, . Variables (2) are
normalized to the amplitude value of the pressure p,, the characteristic wave frequency @,, and

the nonlinear length [/, , which is the distance at which a discontinuity in the plane wave that is
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harmonic at the mput is formed. The characteristic distances at which the discontinuities and

dissipative effects are formulated as
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The ratio of these lengths forms the dimensionless number I =/, /[, which is the inverse

acoustic Reynolds number (Goldberg number). Note that Eq. (4) can also be used for describing
propagation of the spherical waves in the case of the vanishingly small viscosity (I" — 0).
Narrowband noise can be represented as a quasi-monochromatic signal:

v, () = a(t)cos(aw.t + ¢(1)), 4)

where a(?) and ¢(¢) are the functions describing the random amplitude and phase modulations.
In the dimensionless variables (2), the amplitude and the frequency . are of the order of unity. Let
us consider the statistical characteristics of the wave in the case Z>>1, such that initially it is
assumed that I' = 0 and the shock fronts have an infinitesimal width. Therefore, it is obvious that
the quasi-monochromatic wave is transformed into a sequence of the sawtooth triangular pulses

with the same slope V= = ~1/2 4nd the initial amplitude modulation is suppressed in the medium.
Profile of the sawtooth wave, and, consequently, the statistical characteristics are entirely
determined by the coordinates of “zeros” and shocks.

The sawtooth-wave “zeros” coincide with the initial-signal zeros and are obtained from the
equation:

a)*tn + qo(tn) = ﬂ/z + 27m,n = O’il’iz"" (5)

For the narrowband signal, the discontinuity amplitude AU, (x) and its coordinate 7, (x) are
expressed in terms of the derivatives of the amplitude, phase, and frequency [19,20]. In this case,
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we confine ourselves to the quasistatic approximation when the discontinuity motion can be
neglected. In this approximation, we neglect the energy pumping down the spectrum. In this case,
for the amplitude of the discontinuity AU, (x) and its coordinate 7,(x) we have:

AU, =(t

=tz T o=, +t)/2. (6)

n+l

Equations (5) and (6) show that the sawtooth wave has both the amplitude modulation, which is
related to the discontinuity-amplitude fluctuations, and the phase modulation due to the
discontinuity-location fluctuations. The discontinuity-amplitude fluctuations are due to the input-
signal frequency fluctuations Q(¢) = op(¢t)/ ot

i)z AU =2 AUy =2 )
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To analyze the energy spectrum of the field v(¢,z), it is convenient to consider the derivative
ov(t,z)/ ot , which is a sequence of the delta-shaped pulses with the amplitude and coordinates

equal to those of the discontinuity. Assuming the initial process to be stationary and using the well-
known relationships for the spectrum of the sequence of the pulsed signals for the spectral density
S(w,x) of the field v(z,x), we write the following relationship [17,20]:
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S(@.0)=— |~ Y (AU, AU, exp[—za)(rk+p—rk)]>—z—25(a)) , (8)
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where ¢ is the Dirac delta function.
Since for the quasi-monochromatic signals, the discontinuity-amplitude fluctuations are
relatively small and can be neglected in the first approximation, for S(w,x) we have:
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Here, the averaging is performed over the random discontinuity locations 7, . This formula

determines the energy spectrum of the field as a sum of the interference terms among the Fourier
transforms of individual discontinuities. Interference at various frequencies leads to either a
decrease or increase in the spectral density S(w,x) compared with the spectral density of an
individual discontinuity, which is proportional to ALU(z)/®’ . For a harmonic input signal,
discontinuity locations are determinate and the spectral density is discrete:
k=0 2
AU, 1

2 2 *

S(w,x)= Y A8(0—kan), A4 = (10)
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For the quasi-monochromatic signal, the bandwidth Aw, at each field harmonic increases with

the harmonic number and the bands of individual harmonics merge for Aw, >> .. In this case, the

interference of the spectra of individual harmonics can be neglected and only the first term remains
in (9). Comparing expressions (9) and (10), we see that the noise-spectrum fall-off law

S(w,x) oc @ coincides with the law 4] oc k> of fall-off of the squares of the amplitudes of
harmonics with their numbers increasing. In this case, the ratio of the spectral density of noise in the
frequency band Ad to the squared amplitude of the k harmonic equals S(kw.)Ad/ A} = Ad/w, and
is frequency-independent [17].
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Since the phase fluctuations for the quasi-monochromatic signal are small in the period, we
write 7, ,—7,~t,  —t, and to determine the spectral density (see expressions (8) and (9)), it is

sufficient to know the coordinates of the sawtooth-wave zeros. Equation (5) for the coordinates ¢,
of the sawtooth-wave zeros has no exact solution and various approximations should be used during
the statistical analysis [20]. Here, we consider the case of large and slow frequency departures when
the main contribution to the sum in Eq. (9) is from the first terms and to determine the distances
between the fronts, one can be confined to the first term in the expansion
ot ,)—o@,) = (), , —t,) of the phase difference. As a result, we obtain:

g<exp[—ia)(rk+p —rk)]>z§;<exp[ia)2w—r?%—ia)2w—ip]>. (11)

p#0 p#0

The mean in (11) is determined by the characteristic function 99(1)=<exp(MQ)> of the

frequency €2. Using the Poisson summation formula [21], one can easily pass from summation over
the interference terms of the Fourier transforms of individual discontinuities (see expressions (8),
(9), and (11)) to summation over the harmonic numbers. As a result we obtain that the spectral-line
form is determined by the form of the probability distribution W, (€2) of the frequency and repeats

its form for the narrowband signals. In particular, for the Gaussian probability distribution with
dispersion Q° , we write the following expression:

S((O X)—AU CO* z
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For sufficiently narrowband signals in the sum (12), one can replace @./® ~1/n, where n is the

harmonic number. The harmonic bandwidth Aw, ~ nVQ® increases with the harmonic number and
for Aw, >> w, the individual-harmonic lines merge. In this case, a continuous spectrum which is

proportional to @ > and determined by the first term in formula (9) is formed. Allowance for the
amplitude fluctuations leads to weak asymmetry of the harmonic spectrum, which is due to the fact
that the amplitude and frequency fluctuations are anticorrelated, i.e., the amplitude decreases with
increasing frequency.

For finite, but sufficiently large Reynolds numbers, the form of the shock fronts coincides with
that of the stationary shock front and their dimensionless width o is & = 2I’'w/z/z [7]. This leads to

appearance of the multiplier K (w,z) = (oxT/2w.)*/sh* (w7l /2w.) in the expressions (8), (9),
and (12) for the spectral density, which describes the exponential “cutting” of the spectrum, i.e.,
K = exp(-orno / w.) for o >>w./0.

The analytical estimates given above are obtained in the one-dimensional approximation.
Nevertheless, as is shown below, they sufficiently accurately describe evolution of the intense noise
paraxial beams featuring the nonmonotonous dependence of the field amplitude in the beam axis on
the distance and asymmetry of the positive and negative peak values of the discontinuity amplitude
[13,18,23,24], which is related to the diffraction effects. The results of the experimental studies
given below show that the diffraction effects at the developed-discontinuity stage lead to
insignificant difference of the field-spectrum behavior from the power law S(@,x)oc @™
Moreover, one can observe a sufficiently good agreement of the experimentally measured spectra
with the theoretical results given in expression (12).
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3. Experimental study of evolution of the noise beams

The experimental facility (the flow-diagram is given in Fig. 1A) is based on the measurement
complex produced by company Precision Acoustics (Ultrasound Measurement System Control
Centre) and includes an organic-glass container / with the dimensions 1x1x1m, manipulators for
hydrophone and radiator, control computer, and oscillograph Agilent DSO-X 3034 2. The absolute
accuracy of motion along the three coordinates x, y, z using the manipulators is 6 mcm. The
container was filled by a very clean degassed and deionized water with a specific resistance of at
least 18 MOhm*cm, which was produced by the DM-4B membrane distiller unit (Russia). The
water temperature was controlled by a thermometer and amounted to 22+0.1°C in the experiments.
The profile of intense acoustic waves was recorded by the membrane PVDF hydrophone (DH0902)
3 manufactured by company Precision Acoustics. This hydrophone has a characteristic size of the
sensing element of 0.2 mm (the sensing element is manufactured of the 9 mem thick PVDF film)
and is calibrated in the frequency range up to 40 MHz by the manufacturer . The nonuniformity of
the sensitivity characteristic in this frequency range does not exceed 20%.

The radiating part of the facility consists of Tektronix AFG3022 driving two-channel oscillator
4, Amplifier Research 800A100A power amplifier 5, IT2001 Amplifier Research impedance
adapter 6, and radiator 7. The plane piezoceramic radiator manufactured by Olympus company was
used in the experiments. The radiator operation frequency and the aperture radius were 2 MHz and
2 cm, respectively. The radiator Q-factor did not exceed three. Using the oscillator, the noise signal
in the wide frequency range was created, while the already narrowband noise, which was
determined by the amplitude-frequency characteristic of the radiator, was radiated to the medium.
The pump signal was monitored by the oscillograph via the measuring probe (Voltage probe
Tektronix P6139B).

The signal received from the hydrophone was supplied to the Power Supply preamplifier §
produced by Precision Acoustics company, preanalyzed by the Agilent DSO-X 3034 oscillograph,
and recorded to the computer.
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Figure 1: A) Experimental facility flow diagram; B) Amplitudes of the acoustic-wave compression
front along the acoustic axis x for five various input amplitudes at the radiator aperture
Py:a—03MPa,b—-0.4 MPa, c—0.6 MPa, d—0.8 MPa, and e — 1MPa).

The measurements were conducted on the radiator acoustic axis x. During the measurements, the
hydrophone was motionless, while the radiator moved along the acoustic axis. The automated
complex allows one to perform detailed measurements of the acoustic-field structure. In the
experiments, the field was measured in a distance range of 50 - 500 mm from the initial aperture.
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The features of the paraxial propagation of an intense acoustic beam is demonstrated in Fig. 1B.
The main attention should be paid to the nonmonotonous behavior of the compression front of an
acoustic wave along the acoustic axis x. Figure 1B shows the corresponding distributions for five
various initial pressure amplitudes. These dependences are obtained in the radio-pulse radiation
mode with a basic frequency of 2 MHz.

The dependences shown in Fig. 1B obviously demonstrate the saturation effect of the shock-
front amplitude at large propagation distances. A successive increase in the pressure amplitude at
the initial radiator aperture does not lead to a proportional increase in the shock-front amplitude at a
large distance from the radiator aperture. However, in the described experimental environment, full
saturation is not reached because of the limited nature of the Reynolds numbers and propagation
distance.

Let us note another manifestation of the joint action of diffraction and nonlinearity. Once the
initial-aperture pressure is increased, the maximum of the compression front of the wave is first
displaced from the radiator and then starts to move to the latter (see Fig. 1B). The coordinate of the
maximum of the compression front in an intense acoustic beam is determined by both the Reynolds
acoustic number and the radiator diffractive properties. For demonstrativeness, the wave profiles
recorded at the distance x = 20 cm from the radiator aperture are shown in the right-hand part of
Fig. 1B for various pressure amplitudes at the initial aperture. This distance corresponds to the last
diffraction maximum in the field distribution, which is created by the used radiator during its
operation in the linear mode. During insignificant manifestation of nonlinear effects (case “a”), the
coordinate of the compression-front maximum is in the region of the last diffraction maximum. In
case “b,” the nonlinear effects already lead to formation of the shock front and the shock-front
formation coordinate is located behind the last diffraction maximum. Approaching the distance x =
20 cm, the shock front is formed only in cases “c”, “d,” and “e”, such that the compression-front
maximum moves closer to the initial aperture with increasing Py and the “saturation effect” is also
observed.

The experiment on studying the intense-noise evolution along the acoustic axis was organized as
follows. The digital oscillator created the time realization of white noise. This realization was
recorded and supplied to the radiator via the amplification circuits individually for each spatial
location of the radiator--hydrophone system.
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Figure 2: A) Oscillograms of the noise signals at the distances from the radiator equal to x =5 cm, x
=20 cm, and x = 50 cm; B) The noise-signal spectra and the amplitudes of the tone-signal harmonics at
the distances x = 5 cm, x =20 cm, and x = 50 cm from the radiator in the log-log scale. The solid line is
used to denote the theoretical dependence obtained using expression (12).

Figure 2A shows the characteristic oscillograms. At short distances from the radiator aperture,
the shock fronts in the noise-beam profiles have no time to be formed. Approaching the distance x =
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20 cm, the shock fronts are formed in the profiles of the most high-amplitude parts of the beam
realizations. Approaching the propagation distance x = 50 cm, the shock fronts are formed in the
majority of the sections of the noise-beam profile such that the trend to the amplitude-modulation
suppression is observed as it was theoretically predicted. In this experimental environment, no
complete equalization of the overoscillation amplitudes is observed because it is necessary to reach
large Reynolds numbers in the beam or long distances, which is beyond the potential of the used
experimental equipment.

To study the spectral characteristics of the noise signal at each considered spatial coordinate,
1000 oscillograms with durations of 20 mem were recorded. The spectra were taken from each
oscillogram. Then the averaged spectrum of the noise signal was calculated at the considered spatial
point over all realizations.

Figure 2B shows the spectra of the recorded noise signal, while the amplitudes of the tone signal
harmonics (2MHz, P,=1MPa) at the distances x =5 cm, x = 20 cm, and x = 50 cm from the radiator
are given for comparison. The dependences in Fig. 2B are given in the log-log scale with the
frequency and the spectrum amplitude laid off as abscissa and ordinate, respectively. The solid line
in Fig. 2B 1s used to denote the theoretical dependence obtained from expression (12) by parametric
adjustment.

Therefore, the experiment has shown that despite the diffractive features of evolution of intense
acoustic beams, the plane-wave theory sufficiently well describes the form of the noise-signal
spectrum at the discontinuous stage. In this case, the spectrum of the noise quasi-monochromatic
signal can be described by the above-given analytical expressions.
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