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1. INTRODUCTION

Traditionally Hidden Markov Models (HMMs) are optimised according to the Maximum Likelihood
(ML) criterion using the Baum-Welch (BW) algorithm [8]. Whilst the ML estimation of model
parameters maximises the likelihood of the speech data given the model, it does not optimise
a meaningful decision theoretic criterion sud: as the expected error rate. Consequently the ML
approach fails to give good parameter estimation for limited amounts of training data even when
the model space includes the true source. 0n the other hand. when the family of parametric
distributions described by the model includes the distribution of the source and there is an infinite
amount of training data available, then' the global ML estimate is optimal in the sense that it
yields an unbiased estimatewith minimum variance. Unfortunately, when constructing HMM-
based speech recognisers training data is not unlimited and the model space includes no member
that even resembles the true distribution of the source. In these cases. examples can be constructed

[4] where the Maximum Mutual Information (MMI) estimator can produce better models than the
corresponding ML estimator

All of theSe theoretical advantages of MMI over ML are well known. However, clear demonstrations
of the practical utility of MMI when applied to large speech recognition tasks remain elusive. MMI
training involves a number of practical difliculties. The Baum-Weldl (BW) algorithm is a fast and
efiicient algorithm for ML parameter estimation. Unfortunately in its extension to MMI [3], the
practical implementation of the algorithm looses the guarantee of improving the objective function.

Consequently, due to the lack of theoretical guidance. past research on MMI has tended to use
somewhat slow and unreliable gradient descent methods. We have begun a systematic empirical
study of the various methods used to implement MMI training for HMM parameter estimation. This
paper reports the progress of our preliminary work which investigates the applicability of fast first
order derivative methods to MMI training. A set of speaker independent recognition experiments
are presented on a 104 speaker British English E<set database. Conventional HMMs with multiple
mixture continuous output distributions are trained for each member of the E-set. Results are
presented for both diagonal and full covariance HMMs estimated using Maximum Likelihood (ML)
and Maximum Mutual Information (MMI) training criteria. The ML training is carried out using
the standard Baum-Welch reestimation algorithm. The MMI training utilises Scott Fahlman’s
Quickl’rop which exhibits extremely fast and stable convergence. Virtually all rults show clear
performance gains achieved by MMI training and are comparable to the bat reported by other
researchers. '
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2. ML AND MMI OPTIMISATION OF HMM PARAMETERS

In the ML estimation approach, given an acoustic observation y(n) and associated transcription

tr(n) where n = 1.,.N the parameter set A is estimated so as to maximise

L; = Downy-nun» 0’

where y,\(y(n)ltr(n)) is the probability of the acoustic observations from an HMM with parameters

A built to the transcription t(n). The Baum-Welch algorithm which is most commonly used for this

task applies a transformation on the parameter set A which is guaranteed to converge on a local

maximum of Ly. Forexample, the transition probabilities 11.},- are re—estimated using the formula

.-,> t— 1 y—(l—jfi’fi
“will = W'iLJI—al— (2)

Ek=1 "MU —

In the MMI approach the parameters of the model are reestimated by maximising

1.x = EIDEPAM'INWD - losm(v(")l") (3)
n

where r represents the recognition-time HMM. In our case, the recognition model adopts the

structure shoWn in figure 1 which is the composite system of word models including any language

model. '

3. OPTIMISATION OF THE MMI OBJECTIVE FUNCTION

rIiat‘litionally MMI optimisation of HMM parameters is carried out using some form of gradient

ascent. The partial derivative of the cost function is calculated with respect to each parameter

in the system and, using this information. gradient ascent is performed in the parameter space.

The method is guaranteed to converge onto a local maximum only for infinitesimal steps taken

in the direction of the gradient. For example, the update equation of an uncanstmined transition

parameter u.-_,- would be 3

IA
aw“) — “mu 1) + Vania,“ _ l) (4)

where n is the step size. In order to reduce the time needed to find a solution, it is desirable to

take the largest possible step without overshooting the solution. Unfortunately, the set of partial

derivatives computed at a single point in the parameter space does not contain enough information

to do this safely. One way to tackle this problem would be to dynamically adjust the step size

depending on previously computed derivatives. A form of this strategy is to use a momentum term

which adds a small amount of the previous change to the current update

MU) = a-‘JU-IHAflmU) (5)

3" +(Aa;_,-(t— 1) (6)Aa;_,-(t) = am
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In very complex systems, it is often advantageous to have a separate step size foreach parameter.
Jacobs [5] has conducted an empirical study comparing standard Back Propagation of the above
form to an update rule that dynamically adjusts a separate step-size parameter for each weight in
a neural network. The same rule has successfully been used by Robinson [9] for the training of his
recurrent error-propagation network.

Another approach to improving the speed of convergence is to make explicit use of higher order
derivatives [6]. Let a(l — 1) be the vector containing the present values of all parameters in a
system. Given higher order derivative information, a new parameter vector n(i) can be computed

by
3(I) = 8(1 - 1) — nH"s(1) (7)

where a(th l) is the old parameter vector. g(t) is the gradient of the objective function with respect
to the parameter vector and H is the Hessian matrix of second derivatives. The full Hessian of a
system with n parameters will have n2 elements. In order to reduce the computational load due to
the calculation, inversion and storage of the Hessian matrix most implementations of this method
use some approximation to the Hessian. The rate of convergence then depends on the accuracy of
this approximation. In its simplest form such approximations use prior information to zero parts of
the Hessian matrix. For example, the assumption that difl'erent sets of parameters are independent
will result in a block-diagonal Hessian matrix. ln the work presented here, we adopt the rather gross
assumption that all parameters in an HMM are independent. We further simplify the computation
by using a difference approximation to the second derivatives rather than exact values.

H = in.) (8)
am ~ s30)- %;’.¢(t — 1) 9
W ~ ( )I

hit

Using equations 9 and 7 gives

Am) whifigiu) (10)
9E“) _ _

"gin—Ingram“ ‘) “1’
If 1] in the above equation is chosen to be 1.0, the equation becomes identical to the update strategy
of QuickProp proposed by Fahlman [2]. Although the value of Aa;(t) is only an approximation
to the optimal change in parameter, we have found this method to be very effective when applie
iteratively. ‘

The behaviour of the update rule given by equation 11 with q= 1.0 is as follows. If the current
gradient is smaller than the previous one but in the same direction, the parameter will change
again in the same direction. The step taken may be large or small depending on how much the
gradient was reduced by the previous step. If the current slope is in the opposite direction from the
previous one, then we have stepped beyond the maximum. In this case. the next step will place us
somewhere between the current and the previous position. The third case occurs when the current
gradient is in the same direction as the previous but is ofthe same size or larger in magnitude. If we
were to blindly follow the formula we would end up taking an infinite step or moving in the wrong
direction. The third case occurs naturally since the update rule given by equation 7 will converge
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Figure 1: Model structure for E-Set Recognition

to the nearest turning point. In order to handle this special case. we adopt the method used by
Fahlman in QuickProp. No parameter change is allowed to be greater in magnitude than [4 times
the previous update for that parameter. Ifthe change computed by the update formula is too large,
infinite or in the opposite direction to the current gradient, we instead use it times the previous
change as the current change. The optimal value of u is problem specific and we have chosen the
value of 1.75 for our present experiments. In his neural netexperiments, Faltlrnan observed that if

u is too large the system behaves chaotically and fails to converge.

A bootstrap process is also used to provide initial values of the parameter changes. More generally,
if the previous gradient is zero or non-existent then the current change in parameter is calculated

using plain gradient ascent with some learning rate r).

4. EXPERIMENTS dz RESULTS

The task chosen to evaluate the performance of the two training techniques was the speaker inde—
pendent (SI) recognition of the members of the British English E-set (“3", “C”, “D”, “E”, “G”,
“P”, “T” 8; "V”). E<set recognition is considered to he a particularly difficult task due to the high

level ofconfusability between the difi'erent classes in the set. The data used for the experiments was

collected and distributed by 'B'ritish Telecom Laboratories and forms a subset of their spoken al-
phahet database. Each member of the Eset is represented by three utterances from each of the 104
different speakers (54 males, 50 females). The speakers are split into two halves to form a training
set of 1239 utterances and a test set of 1219 utterances. The acoustic preprocessor used the output

of a 27 channel filterhank followed by a Discrete Cosine 'lkansform to produce 12 Mel Frequency

cepstral coefficients (MFCCs) and their first order difl'erentials (the twelve coefficients include the
zeroeth coefficient which is the average value of the log power spectrum). The preprocessor and
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Table 1: Maximum Likelihood Results (SI) for 15-state HMMs, states 7-15 tied. The first column
gives the number of mixtures and type of covariance matrix.
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Table 2: Maximum Mutual Information Results (SI) for 15«state l-IMMs, states 7-15 tied. The first
column gives the number of mixtures and type of covariance matrix.

 

    

    

the partitioning of the data are, in fact, absolutely identical to the ones used by Woodland in [10].
All training and testing used the HTK Portable Toolkit plus extensions for MMI training [11].

All HMMs were strictly left to right with no skips. Eight iterations of ML estimation were used
to produce the models with performance given in Table I (all parameters updated). Twelve to
twenty five iterations of QuickProp were then usedto produce the MMI models whose performance
is given in Table 2(means only). Inboth of these cases, states 7-15 of all the models were tied to
give common modelling of the vowel portion of the E~set words.

In the MMI training, the conditional cross entropy alway's increased from iteration to iteration and
it is well within the neighbourhood of the theoretical maximum after the first 10 - 15 iterations
(see figure 4.). This represents fast and stable convergence which is far superior to standard first
order gradient ascent methods.

In all experiments the MMI-trained models achieved 100% recognition on the training set which
suggests the need for larger training databases. For comparison Woodland [10] reported 0.5% (train
set), 7.9% (test set) using HMMs with discriminative output distributions and reduced feature
vector size.

Table 3 demonstrates the effect of sharing parameters amongst models [12]. The first column in»
dicates the number of mixtures and the kind of covariance of the matrix. For the latter, Ding
denotes diagonal covariance; Hill denotes full covariance; GCou denotes a single grand covariance
tied across all models; and GMCau denotes a single grand covariance for each individual model.
A clear improvement in performance is visible when the vowel states share the same output dis-
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Figure 2: The likelihood functions and conditional cross-entropy plot for [mic/Ding MMI training.

The maximum theoretical value of the average frame conditional cross entropy can be computed

by pn/m where p is the entry model log probability, 1! is the number of training utterances and m

is the total number of frames. For p = log 1/8. n = 1239 and m = 59644 the maximum theoretical

cross entropy is 0.043196.
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Table 3: The effect of tying various parameters (SI). The first column describes the number and
type of mixtures used in the state output distributions (see text). The second column shows which
states have their output distributions tied across all models. A is the total number of parameters
used in the models excluding transition probabilities.

   

tributions acrossall models. This is due to the fact that virtually all of the information needed
to discriminate between the different classes is concentrated in the consonant part of each utter-
ance. Having separate vowel models (possibly not so well trained due to the small amount of data)
will increase the chance of confusion occurring between the classes in the final stages of the Viterbi
search. The table also shows that full covariance modelling provides greater accuracy than diagonal
covariance and that tying a full covariance matrix across all the states of a single model provides a
very compact but efl'ective system.

5. CONCLUSIONS 3; FUTURE WORK

This paper has presented a new implementation of the MMI training algorithm using the QuickProp
update strategy. QuickProp was originally derived empirically, here we have shown that although it
looks like a first order method, it can be regarded as a classical second order optimisation technique
which uses a crude (but effective) approximation to the Hessian matrix.

Results on speaker independent E—set recognition have been presented which show that MMI train-
ing substantially improves recognition performance, but the improvement relative to the cone
sponding ML case decreases as the model complexity increases. The best score of 93.6% correct
is comparable to the best results published elsewhere on this task and the uniform 100% perfor-
mance achieved on the training data suggests strongly, that much better test performance could be
achieved if more training data was available.

Future research will concentrate in two main areas. Firstly, the applicability of MMI training to
large continuous speech recognition tasks will be investigated. Secondly, further second order train-
ing algorithms will he studied in order to find computationally efficient mechanisms for exploiting
MM] and other similar discriminative techniques in large—scale tasks.
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