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A sound field decomposition method using a multipole dictionary for super-resolution in record-
ing and reproduction is proposed. Conventional methods are based on plane-wave decomposition;
however, this procedure leads to severe spatial aliasing artifacts at frequencies above the spatial
Nyquist frequency, determined by the intervals between microphones. We have proposed a sparse
sound field decomposition method based on a model consisting of near-field monopole source and
far-field plane-wave components. Although this method enables super-resolution in recording and
reproduction, the use of only a monopole source dictionary is not appropriate in several cases be-
cause the region of the near-field source components is discretized as grid points. We propose the
use of a multipole dictionary to accurately represent acoustically compact sources with complex
directivity. We prove that this multipole dictionary is also effective for representing source com-
ponents off the grid. Numerical simulations are performed to evaluate the proposed method.
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1. Introduction

Sound field decomposition is a fundamental problem in sound field analysis, reconstruction, and
visualization. The objective of sound field decomposition is to represent a sound field as a linear com-
bination of fundamental solutions of the Helmholtz equation from pressure measurements. In sound
field recording and reproduction, this makes it possible to calculate the driving signals of loudspeakers
required for reproduction from the signals received by microphones, which is referred to as sound-
pressure-to-driving-signal (SP-DS) conversion. Plane-wave decomposition, which corresponds to
spatial Fourier analysis of a sound field [1], has been commonly used because of its computational
efficiency. In recent years, the sparse representation of a sound field has been proved to be effective in
several applications, such as acoustic holography [2], source localization [3], and sound field record-
ing and reproduction [4], owing to the recent development of sparse decomposition algorithms in the
context of compressed sensing [5]. We here consider a sparse sound field decomposition problem for
recording and reproduction.

Sound field recording and reproduction is targeted at high-fidelity audio systems. Wave field
synthesis (WFS) [6] is a sound field synthesis method based on the Kirchhoff–Helmholtz or Rayleigh
integrals, which is generally applied to a planar or linear array of loudspeakers. Since it is necessary
to obtain the distribution of the sound pressure gradient of the desired sound field on the secondary
sources, WFS cannot be directly applied to SP-DS conversion. However, the wave field reconstruction
(WFR) filtering method enables efficient SP-DS conversion [7], which has been extended to several
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Figure 1: Generative model of sound field consisting of near-field source and far-field plane-wave
components.

array geometries [8, 9]. Higher-order ambisonics (HOA) is based on a sound field representation in
a spherical or circular harmonic domain [10, 11]. In HOA, a sound field is generally analyzed and
synthesized using spherical or circular arrays of microphones and loudspeakers, and it can be applied
to SP-DS conversion through encoding and decoding processes [10]. These methods can be classified
as analytical approaches to recording and reproduction.

Another type of sound field reproduction method involves a numerical approach, which is typi-
cally based on controlling sound pressures at discrete positions in a target area [12]. We define this
method as the sound pressure control (SPC) method. The inverse of a known transfer function ma-
trix between loudspeakers and control points is numerically calculated. Since only the desired sound
pressures at the control points are required to obtain the driving signals of the loudspeakers, these
methods can also be applied to SP-DS conversion.

As described above, the analytical approach to recording and reproduction is generally based on
spatial Fourier analysis of the captured sound field. Although this procedure makes stable and efficient
signal conversion possible, artifacts originating from spatial aliasing notably occur, depending on the
interelement spacing between the microphones and loudspeakers. These artifacts cannot be avoided
even when a numerical approach is applied. Owing to the significant effect of the spatial aliasing
artifacts, listeners will not clearly localize reproduced sound images. Furthermore, the frequency
characteristics of the reproduced direct sound are greatly affected.

We previously proposed a sound field decomposition method based on a model consisting of near-
field monopole source and far-field plane-wave components [4, 13]. Under the assumption that the
source distribution inside the predefined near-field region of the microphones is spatially sparse, the
captured sound field is decomposed into these two components using the sparse decomposition al-
gorithm. This method makes it possible to improve the reproduction accuracy at frequencies above
the spatial Nyquist frequency when the number of microphones is smaller than that of loudspeak-
ers, which can be regarded as super-resolution in recording and reproduction. However, the use of
only monopole source components as a dictionary matrix will not be sufficient to represent acous-
tically compact sources with complex directivity because the near-field region must be discretized
as grid points. We propose the use of a multipole dictionary for sparse sound field decomposition.
We prove that this multipole dictionary is also effective for representing source components off the
grid. Numerical simulations are conducted to compare the methods using monopole and multipole
dictionaries.

2. Generative model of sound field and its sparse decomposition

2.1 Sound field consisting of source and plane-wave components

We briefly revisit the generative model of the sound field proposed in Ref. [4]. As shown in Fig. 1,
we divide a sound field in the recording area into internal and external regions, i.e., near-field and far-
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field regions, of a closed surface. The internal region is denoted as Ω. Sound pressures are measured
inside Ω using multiple microphones. It is assumed that source components only exist inside Ω. When
the sound pressure of temporal frequency ω at position r is denoted as p(r, ω), the following equation
should be satisfied: (

∇2 + k2
)
p(r, ω) =

{
−Q(r, ω), r ∈ Ω
0, r /∈ Ω

, (1)

where Q(r, ω) is the distribution of the source components inside Ω and k = ω/c is the wave number
obtained by setting the sound speed as c. Hereafter, ω is omitted for notational simplicity. Equation (1)
indicates that p(r) satisfies the inhomogeneous and homogeneous Helmholtz equations at r ∈ Ω and
r /∈ Ω, respectively. The solution of Eq. (1) can be represented as the sum of the inhomogeneous and
homogeneous terms, pi(r) and ph(r), respectively. Here, pi(r) is represented as the convolution of
Q(r) and the three-dimensional free-field Green’s function G(r|r′) as [1]

p(r) = pi(r) + ph(r)

=

∫
r′∈Ω

Q(r′)G(r|r′)dr′ + ph(r), (2)

where

G(r|r′) = ejk∥r−r′∥2

4π∥r− r′∥2
. (3)

Here, G(r|r′) corresponds to the transfer function between the monopole source at r′ and the position
r. Since it is assumed that sound sources do not exist outside Ω, the homogeneous term ph(r) can be
represented as the sum of plane waves [1]. Therefore, we define these two terms pi(r) and ph(r) as
source and plane-wave components, respectively.

If the captured sound field can be represented as Eq. (2), the driving signals of the secondary
sources used to reproduce the sound field can be uniquely obtained [4, 13]. The source component
pi(r) is reproduced with model-based sound field synthesis methods [14, 15]. The WFR filtering
method can be applied to reproduce the plane-wave component ph(r) [7, 8, 9]. As an example, we
here consider planar distributions of receivers and secondary sources. The sound pressure distribution
is obtained on the x-z plane at y = 0. The plane-wave component ph(r) can be described using the
spatial frequency spectrum on the receiving plane, Ph(kx, ky), as

ph(r) =
1

4π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkzPh(kx, kz)e

j(kxx+kyy+kzz), (4)

where kx and kz respectively denote the spatial frequencies with respect to x and z, and ky =
±
√

k2 − k2
x − k2

z . All the source and plane-wave components are assumed to be in the region of
y < 0. When secondary sources are also arranged on a plane and are assumed to be monopole
sources, the driving signals of the secondary sources can be obtained as [4]

d(r) = 2
∂

∂y
p(r)

∣∣∣∣
y=0

= 2

∫
r′∈Ω

Q(r′)
∂G(r|r′)

∂y

∣∣∣∣
y=0

dr′ +
1

2π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkzjkyPh(kx, kz)e

j(kxx+kzz). (5)

This equation can be regarded as a combination of the synthesis of the source components Q(r) by
WFS [14] and the WFR filtering of ph(r) [7]. If the decomposition of the captured sound field into
source and plane-wave components is achieved, the dominant component will lie in pi(r); therefore,
d(r) obtained by Eq. (5) will become more accurate than that obtained on the basis of plane-wave
decomposition, particularly at high frequencies [4].
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Figure 2: Discretization of Ω to treat sound field decomposition as sparse representation problem.

2.2 Sparse decomposition based on discrete model

A major problem is how to decompose the observed sound pressures into the source and plane-
wave components as in Eq. (2). We apply sparse decomposition algorithms under the assumption that
the distribution of the source components inside Ω is spatially sparse.

To address the sound field decomposition problem (Eq. (2)) as a sparse representation problem, the
region Ω is discretized as a set of grid points. Omnidirectional microphones are discretely arranged
inside Ω to capture the sound pressures. The numbers of microphones and grid points are denoted
as M and N , respectively. We assume N ≫ M because the grid points should entirely and densely
cover the region Ω. The discrete form of Eq. (2) can be represented as

y = Dx+ z, (6)

where y ∈ CM and x ∈ CN respectively denote the signals received by the microphones and the
distribution of the source component at the grid points, z ∈ CM is the plane-wave component, and
D ∈ CM×N is the dictionary matrix of the source components whose elements consist of Green’s
functions (Eq. (3)) between the grid points and the microphones. We assumed that x is the dominant
component of y and z is the residual. Since it can be assumed that only a few source components
exist in Ω, a small number of elements in x have nonzero values. Therefore, the decomposition of y
into x and z can be achieved by solving the following optimization problem:

minimize
x

1

2
∥y −Dx∥22 + λ∥x∥pp, (7)

where ∥x∥p (0 < p ≤ 1) is the ℓp-norm of x, which corresponds to the penalty term used to induce
sparsity of the solution x, and λ is a parameter that balances the approximation error and the sparsity-
inducing penalty. Several algorithms for solving (7) have been proposed [16]. Although Eq. (6)
represents the signal model of a single frequency bin and single time frame, it is possible to exploit
several group-sparse models arising from the physical properties of the sound field [13].

3. Multipole dictionary to reduce discretization error

3.1 Theoretical interpretation of the use of multipole dictionary

By discretizing Ω into grid points, the dictionary of monopole sources will not be sufficient to
represent acoustically compact sources with complex directivity, particularly when the true source
location is not exactly on the grid. We show that the use of a discrete monopole dictionary can be re-
garded as the approximation of the Green’s function with a zeroth-order Taylor expansion. Therefore,
the approximation error of the discretization of Ω can be reduced by using higher orders. We propose
a sparse sound field decomposition method using a dictionary matrix consisting of multipole sources,
which corresponds to the use of higher orders of the Taylor expansion.

We separate the region Ω into a set of small regions Ωn (n ∈ {1, · · · , N}) as in Fig. 2. The
location of a representative point of Ωn is denoted as rn. Then, the source component pi(r) is given
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by

pi(r) =

∫
r′∈Ω

Q(r′)G(r|r′)dr′ =
N∑

n=1

∫
rn∈Ωn

Q(r′)G(r|r′)dr′. (8)

We here consider the approximation of G(r|r′) by a Taylor expansion with respect to rn as follows:

G(r|r′) =
∞∑

lx=0

∞∑
ly=0

∞∑
lz=0

(x′ − xn)
lx(y′ − yn)

ly(z′ − zn)
lz

lx!ly!lz!

(
∂

∂x

)lx ( ∂

∂y

)ly ( ∂

∂z

)lz

G(r|r′)

∣∣∣∣∣∣
r′=rn

,

(9)

where lx, ly, and lz are referred to as the expansion order. This equation corresponds to the multipole
expansion of the Green’s function. By truncating the expansion order of G(r|r′) up to Lx, Ly, and
Lz, Eq. (8) can be approximated as

pi(r) ≃
N∑

n=1

Lx∑
lx=0

Ly∑
ly=0

Lz∑
lz=0

(
∂

∂x

)lx ( ∂

∂y

)ly ( ∂

∂z

)lz

G(r|r′)

∣∣∣∣∣∣
r′=rn

·
∫
r′∈Ωn

Q(r′)
(x′ − xn)

lx(y′ − yn)
ly(z′ − zn)

lz

lx!ly!lz!
dr′. (10)

The expansion coefficients for Ωn including the sources will only have non-zero values. Since Q(r)
is assumed to be sparse, this leads to a group-sparse structure in the discrete model as described in
the next section. When Lx, Ly, and Lz are set as 0, pi(r) becomes a linear combination of monopole
sources, as in Eq. (6), by using the grid points at rn.

3.2 Sparse decomposition with multipole dictionary

We describe a discrete model based on Eq. (10) including group sparsity with respect to multiple
time frames and frequencies as in Ref. [13]. Using the subscripts indicating the indexes of time frame
t ∈ {1, · · · , T} and frequency f ∈ {1, · · · , F}, the following equation can be obtained:

yt,f =
L∑
l=1

Df,lxt,f,l + zt,f , (11)

where l (∈ {1, · · · , L}) is the index of the multipole components combining lx, ly, and lz. The
dictionary matrix Df,l consists of the lth pole of the Green’s function between rm and rn of the f th
frequency as

Dm,n,f,l =

(
∂

∂x

)lx ( ∂

∂y

)ly ( ∂

∂z

)lz

Gf (rm|r′)

∣∣∣∣∣
r′=rn

, (12)

where Gf (·) is the Green’s function (Eq. (3)) of the f th frequency.
By combining the signals and redefining the variables as y ∈ CMTF , D ∈ CMTF×NTFL, x ∈

CNTFL, and z ∈ CMTF , they can be still related by a linear equation as in Eq. (6). Each xt,f,l

should have the same sparse structure. Decomposition by exploiting this group-sparse structure can
be achieved by solving the following optimization problem:

minimize
x

1

2
∥y −Dx∥22 + λJp,2(x). (13)
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Figure 3: Relationship between frequency and SDRR.

Here, Jp,2(x) is a groupwise diversity measure of x defined as

Jp,2(x) =
N∑

n=1

∥xn∥p2 =
N∑

n=1

(
T∑
t=1

F∑
f=1

L∑
l=1

|xn,t,f,l|2
)p/2

, (14)

where x ∈ CTFL is the nth vector component of each group and xn,t,f,l is an element of xn.
The optimization problem in Eq. (13) can be solved by using the iteratively reweighted least-

squares algorithm proposed in [13], which can be regarded as an extension of the FOCUSS algo-
rithm [16, 17]. The source and plane-wave components are separately converted into the driving
signals of the loudspeakers as in Eq. (5). The sum of these signals is the final output of the loudspeak-
ers used for reproduction.

4. Experiments

Numerical simulations were performed using linear arrays of microphones and loudspeakers. We
compared the proposed method, the method only using the monopole dictionary, and the WFR filter-
ing method, which are denoted as “Proposed”, “Mono”, and “WFR”, respectively.

A linear microphone and loudspeaker arrays were set along the x-axis with the center at the origin
in the recording and target areas, respectively. The number of microphones M was 32 and the intervals
between the microphones were 0.06 m. The number of loudspeakers was 48 and their intervals were
0.04 m. Therefore, the spatial Nyquist frequency of the microphone array was about 2.8 kHz and
that of the loudspeaker array was about 4.3 kHz. The array lengths of both the microphones and
loudspeakers were 1.92 m. The directivity of the microphones and loudspeakers was assumed to be
omnidirectional.

In Proposed and Mono, the two-dimensional region Ω was set to be a square of 2.4 × 2.4 m2

centered at (0.0,−2.0, 0.0) m on the x-y plane at z = 0. The number of grid points was 25×13 and
they were set at intervals of 0.1 m in the x direction and 0.2 m in the y direction. The number of time
frames T was 8. The number of positive-frequency bins F was set as 128 and the sampling frequency
was 16 kHz. For the multipole components, a monopole and a dipole for x and y were used for the
dictionary D; therefore, L was set to 3. In Mono, only the dictionary of the monopole was used.

The sound pressure distributions in the target area were simulated in a 2.1× 2.4 m2 region on the
x-y plane at z = 0 with the center at (0.0, 1.0, 0.0) m. The intervals between the simulated positions
were 0.015 m. The amplitudes were normalized using the averaged squared amplitude in the region
y ≥ 0.5 m. The general reproduction accuracy was evaluated using the signal-to-distortion ratio for
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Figure 4: Relationship between source location and SDRR. Cross marks indicate grid points.

reproduction (SDRR) defined as

SDRR = 10 log10

∑
i

∑
j

∑
k |p̄org(xi, yj, tk)|2∑

i

∑
j

∑
k |p̄rep(xi, yj, tk)− p̄org(xi, yj, tk)|2

, (15)

where p̄org(·) and p̄rep(·) are the original and reproduced sound pressure distributions in the time
domain, respectively, (xi, yj) denotes discrete positions in the simulated region and tk denotes discrete
time. The total number of time samples was set to 160, i.e., the duration was 10 ms.

Figure 3 shows the relationship between the frequency of the source signal and SDRR when a
point source was located at (–0.32, –0.84, 0.0) m. Note that the primary source was not exactly on a
grid point. To choose λ for Proposed and Mono, we calculated SDRR from 0.001 to 0.01 at intervals
of 0.001 for λ at 4.0 kHz. Then, λ that gives the highest SDRR was chosen for each method. The
SDRRs of the three methods remained high up to the spatial Nyquist frequency of the microphone
array. In WFR, the SDRR sharply decreased above this frequency. The SDRR of Mono deteriorated
but was maintained to some extent above the spatial Nyquist frequency. On the other hand, the SDRR
of Proposed remained high up to 4.3 kHz, which is approximately the spatial Nyquist frequency of
the loudspeaker array.

To demonstrate the effect of the model of multipole components for the off-grid case, the SDRR
when a single primary source was inside a square region of 0.4×0.4 m2 with the center at (–0.2, –1.0,
0.0) m is shown in Fig. 4. The SDRRs were calculated at intervals of 0.01 m inside the region by
the three methods and the frequency of the source signal was 4.0 kHz. The cross marks indicate the
locations of the grid points. The SDRRs of WFR were low regardless of the location of the primary
source. Although the SDRRs of Mono were high when the primary source was located around a grid
point, they decreased between the grid points. High SDRRs were maintained over the entire region
for Proposed; therefore, the multipole dictionary is effective for off-grid cases.

5. Conclusion

A sparse sound field decomposition method using a multipole dictionary was proposed. In the
method previously proposed by the authors, the near-field region was discretized as grid points and
a sparse decomposition algorithm was applied, where the dictionary of the source components con-
sisted of the transfer function of the monopole sources between the grid points and the microphones.
However, the monopole dictionary is not sufficient to represent acoustically compact sources with
complex directivity. We proposed the use of a multipole dictionary for sparse sound field decomposi-
tion. This multipole dictionary is effective for representing source components off the grid, which can
be interpreted as the use of higher orders of the Taylor expansion of the Green’s function. Numerical
experiments were also conducted to show the effectiveness of the multipole dictionary.
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