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1 INTRODUCTION  

Scaled model experiments are a common and essential technique in architectural acoustics for 
predicting and evaluating acoustic characteristics of full-scale spaces1. This allows the study of 
complex wave phenomena, such as reflections, diffractions, and interferences, which computer 
simulations often cannot fully capture. Consequently, it allows the optimization of architectural 
designs to achieve the desired acoustic environments before actual construction. 
 
The fundamental principle requires strict adherence to similarity laws. For a model scaled by 1/N, 
measurements must be conducted at frequencies N times higher than those of interest in a full-scale 
environment. However, this frequency scaling poses a considerable challenge, because the physical 
properties of air do not follow the same similarity laws. For the accurate auralization of the audible 
band (0–10 kHz) in a 1/10‑scale model, the measurements must be extended to 100 kHz. However, 
at 100 kHz, air absorption dominates and produces attenuation far beyond the full-scale conditions. 
 
Two main approaches address this issue: physical control of gas composition and numerical 
correction of measured impulse responses. Physical methods involve the use of dry air or nitrogen to 
reduce absorption; however, they require specialized equipment and still face practical limits above 
certain frequencies1,2. Numerical correction techniques, such as Polack's MIDAS package using the 
short-time Fourier transform2 and digital filtering-based correction methods3, have been effective in 
correcting air absorption, but they face challenges with increased background noise during the 
correction process4. Note that both numerical correction techniques have a finite time and/or 
frequency resolution. 
 
With recent advances in spatial audio technologies, there is a growing demand for high-fidelity 
reproduction of sound fields such as ambisonics for scale models5. However, the 1/8 inch 
microphones often used in measurements have non-negligible dimensions relative to the model scale, 
making multichannel array microphones impractical. Instead, a single microphone must be moved to 
multiple positions. This process is time-consuming, and strict environmental control is required to 
minimize variations in temperature and humidity during measurements. Accurate correction of 
dispersion and phase velocity would enable correction for subtle changes in air conditions during 
measurement, potentially leading to high-quality auralization. 
 
To address these challenges, we developed a refined compensation framework. In our earlier work6, 
we proposed a theoretical approach that treated the observed impulse response as a superposition 
of plane waves radiated from an unknown "virtual source distribution" along the propagation path. 
Once this distribution is determined, an impulse response for the desired air propagation constant 
can be synthesized, enabling compensation under various environmental conditions. However, direct 
numerical computation faces severe instabilities, particularly for long propagation times, requiring 
frequency-domain windowing, which limits numerical accuracy. 
 
This study refines our analytical approach based on complex analysis7 to develop a unified correction 
framework that addresses both absorption and dispersion. Our method avoids numerical singularities 
and arbitrary parameters while integrating scale conversion and environmental compensation into a 
single procedure. We demonstrate the complete theoretical framework and validate its practical 
performance using a 1/10-scale room model with combined corrections for scale conversion and 
temperature-humidity variation. 
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2 THEORY: ANALYTICAL CORRECTION METHOD 

2.1 Formulation Using Virtual Source Distribution 

The proposed correction method is based on the concept of virtual source distribution6. When sound 
reflects off room boundaries, each reflection can be modeled as originating from the mirror image of 
the source. Each reflected contribution travels from 𝑥0  toward the measurement origin, and its 
amplitude is determined by the boundary reflections and attenuation in air. Arranging these 
hypothetical source strengths along the propagation coordinate 𝑥0  defines the virtual source 
distribution 𝜙(𝑥0). 
 
Under the far-field (plane-wave) approximation, the measured impulse response is the superposition 
of these contributions. By treating each as a plane wave and integrating over all distances, the Fourier 

transform of the impulse response ℎ̂(ω) is given by the sum of the contributions of 𝜙(𝑥0) : 
 

ℎ̂(ω) =
1

2π
∫ 𝑒γℎ(ω)𝑥0ϕ(𝑥0)

0

−∞

 𝑑𝑥0 (1) 

 
where 𝜔  denotes angular frequency and γℎ(ω) the propagation constant of air. This equation 

indicates that ℎ̂(ω)  represents the Laplace transform of 𝜙(𝑥0) . Therefore, 𝜙(𝑥0)  can be 
mathematically determined uniquely through inverse transformation 
 

𝜙(𝑥0) = 𝑖 ∫
𝑑𝛾ℎ(𝜔)

𝑑𝜔
ℎ̂(𝜔)𝑒−𝛾ℎ(𝜔)𝑥0𝑑𝜔

∞

−∞

(2) 

 
The virtual source distribution 𝜙(𝑥0) depends solely on the room geometry and materials of the room 

surfaces and is independent of the propagation medium. Once 𝜙(𝑥0)  is  obtained, the impulse 
response can be synthesized in the target medium with an arbitrary propagation constant that differs 
from that of the experimental system. 

 
In a 1/𝑁 scale model experiment, the measured impulse response is transformed to its full-scale 
equivalent for acoustic analysis and auralization. This transformation expands the virtual source 
distribution by a factor of 𝑁 , mapping 𝜙(𝑥0) ⟼ 𝜙(𝑥0/𝑁)/𝑁 . Substituting this transformation into 
Equation (2), the scale transformation is equivalent to 

 
γℎ(ω) ⟼ γℎ(ω)/𝑁 (3) 

 
Thus, according to Equation (3), the scale transformation in the model experiments can be 
implemented by modifying the propagation constant,. By eliminating 𝜙(𝑥0), an integral transformation 

equation can be derived from the measured response ℎ̂(ν) to the corrected response 𝑟̂(ω)  

 

𝑟̂(𝜔) =
𝑖

2𝜋
∫

𝑑𝛾ℎ(𝜈)

𝑑𝜈

∞

−∞

ℎ̂(𝜈) (∫ 𝑒(−𝛾ℎ(𝜈)+𝛾𝑟(𝜔))𝑥0

0

−∞

 𝑑𝑥0)  𝑑𝜈 (4) 

 
Integral with respect to 𝑥0 converges when R𝑒[γℎ(ν) − γ𝑟(ω)] > 0. This integral is extended to a form 
that is valid over the entire domain through analytic continuation and evaluated using complex 
analysis. 
 

2.2 Propagation Constant of Air 

When the propagation constant of air is denoted as 𝛾  and the propagation distance as 𝑟, the sound 

pressure of a plane wave propagating through air varies according to 𝑒−𝛾𝑟 . The real part of the 
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propagation constant is specified in the international standard ISO 9613-1 for sound absorption in still 
air. This model accounts for classical absorption (losses due to viscosity and thermal conduction) and 
molecular absorption caused by the vibrational relaxation of oxygen and nitrogen molecules in air and 
is defined as a function of temperature, humidity, atmospheric pressure, and frequency. The 
imaginary part of the propagation constant can be written as ω/𝑐 using the sound 

speed 𝑐, and when frequency dependence exists, the sound speed is treated as 𝑐(ω). 
 
The real and imaginary parts of the propagation constant are related through the Kramers-Kronig 
relation, based on the requirement that physical responses satisfy causality. Alvarez et al.8 derived 
the sound speed from the attenuation constant of ISO 9613-1 using the twice-subtracted Kramers-
Kronig relation. In this study, the propagation constant of air was defined using the sound speed 
function by Alvarez et al. as follows: 
 

𝛾(𝜔) = 𝜔2 (𝜇𝑐 +
𝜇𝑂

𝜔𝑂 − 𝑖𝜔
+

𝜇𝑁

𝜔𝑁 − 𝑖𝜔
) −

𝑖𝜔

𝑐0

(5) 

 
where the constants 𝜇𝑐, 𝜇𝑂 , 𝜇𝑁, 𝜔𝑂 , 𝜔𝑁  are derived from the ISO 9613-1 model, which accounts for 
environmental factors, including air temperature, humidity, and atmospheric pressure. The constant 
component of sound speed 𝑐0 vanishes in the integral transformation process in the Kramers-Kronig 
relation. Therefore, the sound speed at zero frequency by Cramer9 was employed in this study. 
 

2.3 Exchanging Propagation Constant 

Direct calculation of the integral transformation in Equation (4) is impractical because of numerical 
instability issues6. These instabilities primarily arise from the loss of significance (catastrophic 
cancellation) and amplification of background noise in the numerical integration process. To derive a 
stable method, this integral was evaluated analytically using complex analysis techniques. 
 
The integral with respect to 𝑥0 in equation (4) is executed under convergent conditions: 
 

∫ e(−𝛾ℎ(𝜈)+𝛾𝑟(𝜔))𝑥0

0

−∞

 𝑑𝑥0 =
1

−𝛾ℎ(𝜈) + 𝛾𝑟(𝜔)
(6) 

 
The resulting function is analytic except at poles, so the domain can be extended through analytic 
continuation. This expression is considered valid regardless of integral convergence. Substituting this 
into equation (4) and performing the inverse Fourier transform yields the corrected response 𝑟(𝑡): 
 

𝑟(𝑡) =
1

2𝜋
∫

𝑑𝛾ℎ(𝜈)

𝑑𝜈

∞

−∞

ℎ̂(𝜈) ∫
e−𝑖𝜔𝑡

−𝛾ℎ(𝜈) + 𝛾𝑟(𝜔)

∞

−∞

𝑑𝜔 𝑑𝜈 (7) 

 
Because 𝛾(𝜔) is rational in 𝜔 and has only four zeros, it is analytic elsewhere in the complex 𝜔‑plane, 
allowing evaluation via residue calculus. Following Jordan's lemma, to ensure causality, the 
integration path is evaluated along a contour enclosing the lower half-plane. The integral is evaluated 
as the sum of residues from only the three poles satisfying Im{ω} ≤ 0  under the convergence 
condition R𝑒[γℎ(ν) − γ𝑟(ω)] > 0. The poles are solutions to: 
 

γ𝑟(ω) = γℎ(ν) (8) 
 
Substituting the propagation constant from equation (5) yields a fourth-order equation in ω, which 
may be addressed using various analytical or numerical solution techniques. The obtained solutions 

are denoted as 𝜔𝑛
𝑝(𝜈), 𝑛 = 1, ⋯ ,4 . Under the temperature and humidity conditions numerically 

confirmed by the authors, one pole position is located at Im{𝜔} > 0, outside the integration path. The 
remainder consists of one pole whose imaginary part alternates depending on the sign of 
R𝑒[γℎ(ν) − γ𝑟(ω)], and two poles with consistently negative imaginary parts.  
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Therefore, equation (7) is calculated as 
 

𝑟(𝑡) = ∫
𝑑γℎ(ν)

𝑑ν

∞

−∞

ℎ̂(ν) ∑ (
𝑑𝛾𝑟 (𝜔𝑛

𝑝(𝜈))

𝑑𝜔
)

−1

𝑒−𝑖𝜔𝑛
𝑝(𝜈)𝑡

3

𝑛=1

 𝑑ν (9) 

 

For the dominant pole, the quantity (𝑑𝛾𝑟 (𝜔1
𝑝(𝜈)) /𝑑𝜔)

−1

 is on the order of the speed of sound; by 

contrast, for the other two poles its magnitude differs by more than 10−3. This dominant pole can be 
approximated accurately, allowing all residue calculations to be reduced to a single term. A 

computational formula is derived that uses the measured impulse response ℎ̂(ν), the propagation 
constant γℎ(ω) determined from measurement conditions, and the target propagation constant γ𝑟(ω). 

As a result, the impulse response amplitude is adjusted by 𝑒Im{𝜔1
𝑝

(ν)𝑡}, thereby correcting for the effects 
of air absorption. Here, a stable algorithm has been derived by analytically solving the unstable 
calculation that completely removes air absorption. 
 

3 EXPERIMENT 

3.1 Experimental Setup 

To validate the effectiveness of the proposed method, impulse response measurements were 
conducted using a 1/10 scale empty room acoustic model. The model was constructed from acrylic 
with a room volume of 0.317 m3 and surface area of 2.82 m2. The experiment was performed under 
empty room conditions with only the equipment necessary for acoustic measurements-speakers, 
microphones, various cables, and temperature-humidity sensors-placed inside the model. 
 
 
The experiment was conducted in a controlled environmental chamber capable of regulating 
temperature from 5°C to 40°C and relative humidity from 30% to 80%. Temperature and humidity 
measurements were performed using a testo 625 hygrometer, while atmospheric pressure was  
measured using a testo 511 barometer. After each environmental change, approximately 30 minutes 
were allowed for air stabilization inside the model, with the model openings remaining open during 
this period. During the measurements, the openings were sealed with acrylic covers. Atmospheric 
pressure was measured outside the model as it remained constant throughout the laboratory.  
 
A ribbon tweeter (Pioneer PT-R4) was used as the sound source. A 1/8-inch condenser microphone 
(B&K 4138) was employed for sound reception. Signal input and output were handled by an AD/DA 

 
Temperature 

(°C) 
Relative 

Humidity (%) 
Atmospheric 

Pressure (Pa) 

A 15.7 41.0 101,460 

B 18.8 53.6 101,480 

C 25.1 62.7 101,380 

D 29.6 71.1 101,380 

E 11.0 39.0 101,480 
 

Figure 1. Experimental configuration of the 
scaled reverberation chamber 

Table 1. Testing conditions in the scale‑model 
reverberation chamber 
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converter (NI PXle-6386) with a sampling frequency set to 1 MHz. A 60-second time stretched pulse 
was used as the measurement signal, with no synchronous averaging performed. 

 

3.2 Experimental Result of Propagation Constant Correction 

In this study, we first converted all impulse responses (conditions A, C–E) to a common reference 
(condition B) using our proposed method. However, when the correction formula (9) is applied directly, 
the background noise signals change exponentially—either amplifying or decaying—which distorts 
late-time responses. To stabilize the background noise levels, we introduce an amplitude correction 
factor 𝐺(𝜈, 𝑡) 
 

𝑒−𝑖𝜔1
𝑝(𝜈)𝑡 ⟼ 𝑒−𝑖Re{𝜔1

𝑝(𝜈)}𝑡𝐺(𝜈, 𝑡), 𝐺(𝜈, 𝑡) =  
𝑒−(𝛿0/𝑁+δ)t + (𝑏/𝑎)1+𝑁𝛿/𝛿0

𝑒−𝛿0𝑡/𝑁 + 𝑏/𝑎
(10) 

 

where 𝛿 = −Im{𝜔1
𝑝(𝜈)}, and 𝑎, 𝑏, 𝛿0 are values obtained through parameter fitting, assuming that the 

amplitude of the measured impulse response can be expressed as 𝑎 𝑒−𝛿0𝑡 + 𝑏 for frequency 𝜈. The 

values of 𝑎, 𝑏, δ0  obtained for 1/3-octave band signals were extended to continuous frequency 𝜈 
through interpolation. This amplitude correction function preserves the crossover time 𝑡𝑀 =

𝛿0
−1

log(𝑎/𝑏), where 𝑎 𝑒−𝛿0𝑡𝑀 = 𝑏. The time 𝑡𝑀 separates the signal domain from the noise floor, with 

the signal level at the crossover time being 𝑎 𝑒−(𝛿0+δ)𝑡𝑀 at the crossover time. The corrected impulse 

response 𝑟(𝑡) also maintains the temporal structure of 𝑎 𝑒−𝛿0𝑡 + 𝑏. This corresponds to the noise 
scaling concept proposed by Ćirić et al.4. 
 
Figure 2 shows the initial impulse responses of measured and corrected values. While differences in 
amplitude and phase due to temperature and humidity variations were observed in the uncorrected 
impulse responses, the corrected responses showed good agreement in both phase and amplitude. 
In the 80,000 Hz band, wave packet alignment was observed, although some phase discrepancies 
remained. Such errors may be attributed to measurement errors in air temperature and humidity and 
modeling errors in the propagation constant, among other factors, although the details remain unclear. 
 
The reverberation times T20 obtained from Schroeder integration of the impulse responses are shown 

Figure 2. Octave band (2,500Hz, 10,000Hz, 80,000Hz) impulse response waveforms (3-7msec): 
measured (top row) and corrected for Condition B 18.8°C, 53.6%, 101,480Pa (bottom row) 
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in Figure 3. The scatter in the data observed among conditions in the uncorrected signals was 
significantly reduced through application of the proposed method, showing good agreement. The 
slight remaining scatter in the 2,500 Hz band is attributed to an insufficient signal-to-noise ratio due 
to the low signal amplitude.  

 
3.3 Experimental Result of Scale Conversion 

The reverberation model was treated as a 1/10 scale reverberation room model, and the impulse 
response was converted to full-scale conditions. The propagation constant determined from the air 
conditions was reduced to 1/10 of the measured value according to Equation (3), and the correction 
formula was calculated. The target correction conditions were set to 20°C, 50%, and 101,315 Pa 
atmospheric pressure. 
 
The initial waveforms are shown in Figure 4. Similar to Figure 4 (lower panel) where air conditions 
were modified, results showing wave packet alignment were obtained. The band-wise level 
waveforms of the full-scale impulse responses are shown in Figure 5 (condition E) and Figure 6 
(condition D). For comparison, the measured values before applying scale transformation and 
correction were plotted with the time scale expanded by a factor of 10. Attenuation is corrected and 
signal amplification is confirmed. The noise floor increases, and the signal-to-noise ratio (SNR) 
decreases in certain bands (e.g., 8 kHz for condition D). 
 
The reverberation time RT20 after scale transformation and propagation constant correction is shown 
in Figure 7. Even with correction including scale transformation, the corrected reverberation times 
show good agreement. However, for conditions C and D at 8 kHz band, the reverberation time could 
not be determined owing to the increased background noise. 
 
The experimental results demonstrate that the proposed analytical method successfully corrects both 
amplitude characteristics (absorption) and waveform properties (dispersion) while simultaneously 
handling scale transformation and temperature-humidity condition corrections. The method 
maintained high accuracy across different environmental conditions and scale factors, validating its 
effectiveness for practical-scale model applications in architectural acoustics. 

 

Figure 3. Reverberation times for octave band signals 
 (left) before correction; (right) after correction 



Proceedings of the Institute of Acoustics 

 

 

 
Vol. 47. Pt. 1. 2025 

 

 
Figure 4. Corrected impulse responses for scale-model measurements under Conditions A-E, 

converted to full scale by a factor of 10. From left to right: octave-band signals at 2 500 Hz, 10 000 
Hz, and 80 000 Hz 

 
 

 
Figure 5. impulse responses measured under Condition E in three frequency bands (250Hz, 

1000Hz, 8000Hz). black: measured response with time axis stretched tenfold, blue: responses after 
applying a scale and propagation constant conversion 

 

 
Figure 6. impulse responses measured under Condition D in three frequency bands (250Hz, 

1000Hz, 8000Hz). black: measured response with time axis stretched tenfold, blue: responses after 
applying a scale and propagation constant conversion 
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Figure 7 Reverberation time RT20 of impulse responses after transformation (8k bands for 

conditions C and D omitted due to low SNR) 

4 CONCLUSION 

This study presents an analytical framework for correcting air absorption and dispersion in acoustic 
scale model experiments. By treating the problem in the complex-analytic domain, the method unifies 
impulse responses measured under varying atmospheric and scale conditions. The proposed 
framework demonstrates precise alignment of waveforms, correcting discrepancies in both phase and 
amplitude. 
 
To manage the noise amplification inherent in this process, an amplitude correction function was 
implemented to stabilize the background noise floor. This function managed noise under most 
conditions, preserving the signal's temporal structure while preventing exponential noise growth. 
However, in cases involving low initial signal-to-noise ratio (SNR) and large required absorption 
correction, residual noise impeded the reliable determination of parameters such as reverberation 
time. This demonstrates that the quality of the corrected signal depends on that of the initial 
measurement.  
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