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INTRODUCT 10]

Many new techniques have been proposed for imaging the human body by the

processing and manipulation of ultrasound data acquired from the scattering of

wave fields incident on some region of interest. The plethora of methods are

analysed here to show the following common features: (a) an underlying physical

model which prescribes the diversity of interactions thought to be amenable to

measurement". (1:) a data acquisition configuration that restricts the full

complexity of interactions contributing to the measurements. and limits the impact

of possible artefacts; (c) a computational model. which is essentially an

approximation scheme for linking the measured data to the interaction parameters

of the underlying physical model. This approach serves as a unifying basis for

classifying the various quantitative scatter imaging methods. These statements are

illuminated below by the explicit working of a few telling examples.

SCATTER MAPPING

Consider that. for some hypothetical lossless tissue. the scattering of linear.

longitudinal ultrasound waves is known to be caused by elasticity fluctuations
only. In this case, we adopt the (correct!) underlying physicalmodel:

v=p<m> - p"<:.-_.t>/cz = x<:)p"(r_.c)/c2 ' (1)

Here. p denotes the pressure field at location 1; and time t, " denotes $/&t2. c is

the (constant) mean ultrasound velocity in the scattering medium. and l is a

function of the elasticity fluctuations (vanishing for a uniform medium). For
simplicity, it will he assumed that ‘1 takes on non-zero values only inside some
finite region. R. which is embedded inside a uniform medium with wave velocity c.

The following scattering experiment (data acquisition configuration) is performed
on the region of interest. R. An incident plane wave. of frequency Felix. and
directed along the direction in. is allowed to penetrate the region R. The waves
scattered into the directions. as, are measured at some location quite remote from

R (far-field measurement), so that the scattering amplitude, 17. may be deduced. It
is easy to show that, in the first Born approximation (computational model), the
scattering amplitude is given by [1)

r (n) = szedm (n) .exp (in-n) m: (2)

with k=2r/i, and nuns-nah. The three elements (viz. physical model, data model,

and computational model) of this inverse scattering technique are now seento have
been identified. and it is clear that. for imaging purposes. the desired output is a
mapping of 1(1) — to be reconstructed from the set of measurements. 0(a). Given
the structure of (2), it is immediately apparent that i may be obtained by Fourier
methods: '

x (1:) = jaw (a) .expi-iuon) mm;2 (a;

In order to effect the inversion in (3). the scattering amplitude rr needs to be
measured for all u-values. The different variants of the diffraction tomography
technique may be regarded as nothing but different approaches towards achieving
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that aim. Given that three experimental variables (as. 11., and k) may be varied in

order to sweep a through its desired range. it is clear that a large number of

experimental techniques may be devised. Note, however, that an essential

ingredient in all methods will be the recourse to computational methods in order

to recover the desired mapping. The aim of any technique will be to produce a

quantitative map - i.e. one in which image density relates in a well-defined and

known way to the value of the associated tissue interaction parameter. In most

applications. mixtures of parameters are more easily mapped: in these cases. only

spatially invariant, scalar point functions of interaction parameters are true

candidates for quantitative imaging»

IMAGE FUZZHESS

Consider now the case that. unknown to the experimenter, scattering from density

fluctuations also occurs in the region of interest. R. Provided that the "tissue"

remains sensibly lossless, then the experiment outlined_above yields the scattering

amplitude [l]

m.) = kefedmtv + bonimvlexpuucflfln <4)

 

where B(:) is a function containing the density fluctuations. Em) represents the

measured data set. and is the input to the image reconstruction algorithm.

At this stage. the correctness of the underlying physical model becomes crucial.

If the model in (1) is unwittingly assumed. then the inversion technique is

embodied in (3), since the true structure. of the scattering amplitude will be

unknown. In this case. however. the data set 2 will not produce a quantitative t —

map when substituted into an algorithm of this type. Instead, the desired mapping

will be contaminated by B— and frequency dependent V‘B— contributions. This

circumstance. that an image displaying a desired interaction parameter is corrupted

in some unpredictable manner by other interaction features not included in the

original physical model, was first identified by the the name "fuzziness" [2]. Note

that a fuzzy image may well display an apparently high resolution - this last

feature being more dependent on the quality of measured data (particularly

sampling and range in u-space) and finesse of the inversion algorithm employed.

Clearly. however, a fuzzy image will not. in general. be a truly quantitative one.

In the example shown here. the incorporation of the spatial derivatives of B in the

final mapping results in this fuzzy image being essentially non-quantitative: the

image density at a point does not depend. in general. only on the values of the

interaction parameters (1. B) at the corresponding point in the object.

The critical importance of the physical model for all aspects of quantitative

scatter imaging is illustrated by further consideration of the example (4).

Consider now that it is known that density fluctuations also contribute to the

scattering. and that the following (correct) physical model is assumed:

v2p(n,t) - p"(x‘_.i:)/c2 = X<[)p"(n,t)/c= + v-(B([)vp(r_,t)) (5)

'How, the correct scattering amplitude is known by the experimenter to have the

structure (4). and it becomes possible to devise data acquisition strategies for

obtaining quantitative scatter images. Thus. a data set 129(k) may be acquired in a

scattering experiment for which the scattered waves are measured only orthogonally

to the incident direction. For these data. ns-m=0, and (4) shows that substitution

of E;- into an inversion algorithm of the type (3) will yield a quantitative mapping

of X. 01: the other hand. accumulating a data set :o(fl) under backseattering

conditions (m3=_fld) will lead to a quantitative mapping of the parameter r-fl. which
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is related to characteristic impedance fluctuations. Thus, the underlying physical
model aids in devising an appropriate data acquisition configuration, in order to
minimise the artefaots associated with fuzziness. It is important to appreciate
that when the physical model contains two interaction parameters. then two
independent experiments. and hence data sets, are required in order to achieve
(two) truly quantitative images. The concept is easily generalised to any number
of interaction parameters [3].

In practical applications to imaging human tissues, it should he remembered that
physical models such as (1) and (5) are not adequate. since they fail to take into
account the significant, frequency dependent, absorption processes occurring.
Moreover. additional scattering terms may be present. which arise from fluctuations
in the absorption parameters [4]. It is clear. therefore, that quantitative inverse
scatter imaging of human tissues will call for accurate physical modelling and
carefully designed data acquisition schemes, at the very least.

A CLASSIFICATION OF TECHNIQUES

A number of inverse scatter imaging methods have been proposed and implemented
either with phantoms or real tissue data in recent years [5L While each of these
techniques may be seen to embody the three components (physical. data. and
computational models) discussed above, it is on the basis of their data acquisition
configurations that they may be classified and distinguished

6] These "reconstruction-from-
projection" methods for producing attenuation and velocity maps may be interpreted
as inverse scatter imaging techniques that rely on measurements of the forward
scattered fields only.

Wow techniques employ back-scattered fields only. A wide
variety of different approaches have been proposed, but. to date, superposition
tomography [7] and flow imaging [6] are the two variants that have actually
proceeded beyond the theoretical stage. Both have already been implemented in a
clinical setting, providing informative "in vivo" images in a number of different
medical contexts.

Wwas originally suggested by Hueller and his colleagues [91,
and has been extensively developed since then, spawning a large family of variants,
whose members are occasionally introduced as "new" techniques. All approaches are.
however. characterised by their reliance on measurements of the angle-scattered
field. Despite its great flexibility (especially to accomodate a wide spectrum of
physical and computational models) and undoubted'potential, diffraction tomography
has lagged significantly behind the two previous categories in respect of its "in
vivo" applications.

Despite the practical emphasis on tomographic imaging, inverse scatter techniques
are true three dimensional imaging methods. in principle. However. ultrasound
penetrability in many human tissues will severely limit the possible applications
of even two dimensional imaging by this approach. Clearly, given the somewhat
simplistic physical and computational models occasionally invoked, it will be some
time before quantitative scatter imaging is widely available. On the other hand,
the CUT approach has probably adequately achieved this goal, albeit with only
modest resolution.
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THE PROPAGATUR- REFLECTOR FORMAL ISM

There is another approach towards systematising the structure of the inverse
scatter imaging techniques that we are considering here (viz. those utilising
linear. longitudinal waves) and has been called the propagator'reflector formalism
[3]. To introduce this. it is noted that the structure of physical models in
general. and of (l). (5) and (a) in particular. may be written symbolically as

flp(;,t) = Rpigt) (6)

where“ is a (linear) operator describing how the wave p propagates through a
uniform (or slowly varying) medium with interaction parameters taking on the
(regional) mean values of the fluctuations actually occuring in the true medium.
and R is a linear operator describing the reflections (a scattering) by the small-
scale variations in interaction parameters. A precise definition. and a more
detailed investigation of the significance. of these operators may be found in [3].
but we note here that the following three major problems of inverse scatter
imaging may be related to the components of this formalism.

Euzziness has been described above, and is seen to be dependent on the accuracy of
the reflector nodel. '

Estonian of the recovered image may occur. if the propagator model is incorrect.
(Consider: amplitude distortion if absorption is neglected in Tl. or geometric
distortion if refraction effects are omitted).

Wis determined ultimately by the sampling of the measured ijields and the
adequacy of the data 5et(s). However. it is also dependent on the computational
model (as are the fuzziness and distortion). In this sense. resolution is
influenced by the physical model (5 11 + R). which determines the inversion
algorithm itself.

THE BORN APPROX INAT ION

The first Born approximation ("IBA‘D is of some considerable interest. since the
inverse problem can be solved exactly when it is valid. This is demonstrably so
in (3) and (4). Clearly. it is important to have some idea of whether the IRA
applies in any given imaging situation. and much effort has been devoted to
investigating its validity conditions.

In practice, computational models are checked, in an inverse scattering context.
by considering a relatively simple physical model. The exact scattered field from
a very simple (usually two-dimensional. rotationally symmetric) object is
laboriously computed. for the case of a simple input field. such as a continuous
plane wave. The emphasis on simplicity is dictated by the extreme difficulty and
computational intensity demanded by calculations of this type. This exact.
computed. field is then utilised to provide the data set from which the object is
recovered via the computational model under test. The success of the inversion
algorithm is assessed by its ability to faithfully recover the original input
object.

Virtually all realistically tested computational schemes depend on the ‘Born or
Rytov approximations. and the validity of the former is discussed here. It is.
unfortunately. difficult to extrapolate from results obtained in computer
experiments of the type outlined above: these are limited to very simple. two-
dimensional objects. and their generality is not clear.
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In the following, we propose a somewhat different approach to this problem. based
on the seemingly simple observation that the I“ cannot be expected to be valid.
in general, unless the full Born-Neumann expansion converges.

we choose to work within the framework of a relatively straightforward. but much
used. physical model, viz: the inhomogeneous Helmholtz equation. This describes a
loss-less medium with a fluctuating, spatially varying, (acoustic) Velocity. cm),
such that

c:(:) = oa2(1 + n([>}“' (7)

with Co constant, and all velocity variations incorporated into 11(2). A linear
acoustic wave. p<:.t)=.y(x:)exp(iut). with u=Cok, will propagate through the above
medium according to

_ vaym + k=y([) = -n<;)k’-‘v(:) . (s)
It is convenient to express the Helmholtz equation in its integral formulation: I
yin) = you) + k=fd:'G(;,:')n(r_’>y<:') (9)
where Va denotes the incident field (i.e. the wave that would exist in the absence
of the velocity fluctuations). and G denotes the Green's function appropriate for
the scattering problem,

Gizm') = expiikln - Ell/41m; - ['I (10)
in an entirely symbolic way, the integral equation can be written

y = in, + xy <11)
with y and ya denoting the appropriate functions, and K denoting the operator
appropriate to the kernel

K(n.x:'> E k=G<c.n')n(c) (12)
The underlying structure of the basic integral equation is now apparent, and it may
clearly be solved by iteration to yield the so-called Born-Heumann expansion for
the field:

y = yo + mg + Fyo + .... ,. (13)
The full series solution for the field \I is extremely cumbersome to evaluate in any
realistic case. In practice, therefore, the series is terminated, in order to give
an approximate solution. In particular, the first Born approximation is given by

Ya E ‘Io + KW: (14)

it may be shown [10} that the Born-Heumann expansion converges provided that

k-jdrfaz'lmoI.IG<;.;'>I=In<;')I < 1 . (15)
Some manipulation of this last expression leads to the following sufficient
condition for the convergence of the series solution to y:

(1/4n)k=suden'ln(L'HJLv [’I“ ( l ' (16)

where supr denotes that the least upper bound of the succeeding function be taken,
as the variable r. ranges over its entire domain.

Consider now a specific example. viz. the scattering of an incident plane ane by a
uniform sphere of radius R. Let the acoustic velocity difference between the
sphere and its surrounding medium be such that

Proc.l.0.A. V018 Part: (1988) 27
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|n(r_)| A“ for in! S R
0 otherwise (17)

Computation of the sufficiency conditions derived above. lead to the conclusion

that the convergence of the Born series is assured if

KAkR < 1 (18!

in other words, if this condition is violated. the 13A is unlikely to be a good

approximation. Under such circumstances. the utilisation of an inversion algorithm

which assumes the validity of the USA might well lead to unacceptable images.

Although we have chosen a simple example only. the treatment presented here is

perfectly general, three (or even more!) dimensional. readily applicable to quite

complex scattering structures. and even capable of handling more sophisticated

physical models — all without the need for recourse to extensive computer

simulations. -

CONCLUSIONS

We have indicated that physical modelling underpins much of inverse scatter

imaging. and gives rise to the notion of image fuzzlness. Moreover. physical

models enable data acquisition strategies to be devised, which minimise artefacts

arising from this source.

All inverse scattering techniques consist of three major components: a physical

model, a data model. and a computational model. Available methods may be

classified according to their data acquisition configurations.

The Born approximation is an important element in many inversion schemes. and we

have proposed a powerful but simple approach towards stating its validity

conditions. in very general terms.
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