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The prediction of sound insulation of buildings is standardised in EN 12354. The method is based
on a simplified Statistical Energy Analysis (SEA) approach. The energy ratios of various subsys-
tems are the main quantities to predict sound transmission. The method has proven to work suf-
ficiently accurate for masonry and concrete buildings, where the building components like walls,
floors etc. can be regarded as rather homogeneous structures. To adapt this method for solid tim-
ber constructions it is necessary to prove that basic SEA requirements are fullfilled by orthotropic
materials and heterogeneous structures that occur in these building types. In a case study, an
isolated T-junction formed by Cross Laminated Timber (CLT) elements is experimentally investi-
gated. The buildings elements are subdivided in segments with typical screwed connections. In
the experiments the diffusivity of the vibration field is investigated, using point excitation with
a shaker at several positions and many, randomly chosen response positions. MONTE-CARLO

simulations are conducted for random but fix-sized subsets of the measured response positions to
find the necessary number of response positions for an accurate determination of the vibrational
energy. As a result the distribution of the mean velocity levels can be approximated. In a second
approach a multiple linear regression model based on the least absolute shrinkage and selection
operator (LASSO) is applied, because for lower frequency bands multicollinearity is expected. In
the context of linear regression modelling, data-driven methods are used to select optimal subsets
of response positions, to get an estimating equation.

Keywords: Statistical Energy Analysis, Cross Laminated Timber, LASSO, Regression model,
Bootstrap prediction interval

1. Introduction

For the prediction of sound insulation in buildings, knowledge about the relevant energy transfer
paths is essential. These depend on the physical properties of the involved components and their
coupling. Some assumptions in EN 12354:2000 are based on junction properties and the bending
stiffness of the plates which are typical for masonry and concrete constructions. Additionally the
measurement procedure described in ISO 10848-1:2006 [1] is harmonised to these constructions. This
standard gives guidance for the number and the positions of responses and of excitation positions to
quantify the vibrational energy Evib of a component, for example. Evib is experimentally determined
by a temporal and spatial average of the squared velocity xveffy

2 and the total mass m according to
(1). Thereby I is the total number of the individual response positions i, Ekin the kinetic energy and
Epot the potential energy of the component.

Evib “ 2Ekin “ m xveffy
2
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(a) Top view of floor (left) and side view of
wall (right). The dashed lines on the build-
ings components indicate the positions of the
connections of the single CLT elements. The
numbered response positions are the optimal
subsets acc. to (11) and (12).

(b) Test rig
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(c) Spatial sampling of floor (left, dmin “ 0.400m)
and wall (right, dmin “ 0.401m). The bend-
ing wavelength λB for both principal directions
is normalised to the averaged, minimum distance
dmin between two adjacent response positions. The
modal overlap factor M ě 1 is also drawn.

Figure 1: Test rig consists of CLT elements. Six different excitation positions and 30 response positions ˝‚
(model B: only ‚) are used on the floor and bottom wall, respectively. The floor intersects the two walls.

There are different assumptions for (1). The two conditions listed below will be focused:
1. Ekin “ Epot

2. Number of response positions I
(a) Non-diffuse vibration field: I Ñ8

(b) Nearly diffuse field: Minimum number of uniformly distributed positions I Ñ Imin

The first assumption is justifiable at the resonance frequency of a mode or approximately within a
frequency band that contains many modes. The second assumption is experimentally impractical;
except for the case of a nearly diffuse vibration field the number of required response positions is
sensible due to its low spatial variation.

From a physical point of view solid wood constructions show some fundamental differences to
classical heavyweight constructions. In the case of Cross Laminated Timber (CLT) the material stiff-
ness can have a strong directional dependency. Additionally the junctions between building compo-
nents can be regarded as point connected and are more flexible. To adapt SEA-based models for solid
wood constructions it is therefore necessary to verify calculated energy quantities by experiments.

The questions are (a) whether an adaption of the measurement procedure for these components is
necessary to estimate the vibrational energy for a chosen confidence interval and (b) how to consider
physical characteristics of those components. To find an answer to these questions an experiment
[2] and a statistical evaluation of the vibration field [3] are performed. For statistical analysis the
software R is used [4] with the packages BOOT [5] and LARS [6].

2. Case study on a T-shaped junction of components

2.1 Test rig and measurement setup

The vibroacoustic test rig at the University of Applied Sciences Rosenheim has been developed
to determine vibration reduction indices of solid timber building elements by Operational Vibration
Analyses and the Power Injection Method. It is possible to investigate T- and L-shaped junctions of
typical building dimensions with the possibility of applying an extra load per unit length of 20 kN{m
maximum. Figure 1 (b) shows the T-shaped junction regarded within this case study consisting of two
CLT walls and one floor. The walls have three and the floor six crosswise glued layers.

To excite the structure a modal shaker was used driven with a logarithmic sinus-sweep signal
(2 oct {min). In the experiments the force and acceleration at the excitation positions as well as the
acceleration of the response positions shown in Fig. 1 (a) are measured. For the statistical analysis the
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bottom wall is excited and the energy of the floor is determined. For the excitation positions the area
nearby the edges according to [1] and the centre lines are excluded before using a random choice at
the bottom wall. For each of the six excitation positions the identical sample of 30 response positions
is used. The response positions are chosen stepwise by chance, but keeping a minimum distance
around already fixed positions.

Figure 1 (c) gives information about the average spatial sampling in x- and y-direction using the
chosen response positions. For long bending waves high spatial level differences cannot be avoided
because of the modal vibration pattern at low frequencies. However in the mid frequency range
the spatial level differences are declining, since the vibration field becomes more diffuse due to the
fact that the number of modes per band and the inter-modal energy exchange are increasing. For
the evaluation of energy equipartition the modal overlap factorM ě 1 is added to Fig. 1 (c). In
compliance with the theorem of SHANNON the ratio between the bending wavelength λB and the
average distance of response position dmin has to be bigger than 2, but it is expected that this condition
becomes less important with increasing modal overlap factor.

2.2 Results of experiment

The characteristics of the excitation positions k are illustrated by the driving-point mobility LY,k
for an one-third octave band f . It is calculated from narrow-band measurements with J frequency
steps according (2), where the reference mobility Y0 is 1 pm{sq{N. Figure 2 (a) shows a significant
effect of the excitation position below 250 Hz. Especially the results in the one-third octave bands
50 Hz and 80 Hz show a wide scattering, probably due to a spatial selective excitation of modes.

LY,k “ 20 lg

˜

1

Y0

1

J

J
ÿ

j“1

Re

"

vk,j

Fk,j

*

¸

(2)

An analysis of the driving-point mobilities in narrow bands has shown that no modes were excited
in the one-third octave bands 63 Hz and 125 Hz. In these frequency bands the prerequisite Ekin “ Epot

for the application of (1) is not fulfilled. To minimise the effect of different force amplitudes at
the excitation positions k, the narrow-band velocity vi,k,j at response position i is normalised to the
force Fk,j and summed in an one-third octave band f according to (3). With the reference velocity
v0 “ 1ˆ 10´9 m{s the spatial average velocity level Lxvy,norm,k is calculated according to (4).

v2norm,i,k “

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ
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Lxvy,norm,k “10 lg

˜

1

v20

1

I

I
ÿ

i“1

v2norm,i,k

¸

(4)

Figure 2 (b) shows these results for the wall and the floor respectively. The discrepancies between
results of different excitation positions again are significant below 250 Hz due to the spread of the
driving-point mobilities. Above 250 Hz the effect of the excitation position on the spatial average
velocity level is insignificant for the CLT-wall and floor.

The box plots in Figs. 2 (c) and (d) illustrate the distribution and the spread of the 30 individual
normalised velocity levels for the specific excitation position k “ 1. Especially at low and high fre-
quency bands a wide variance and an asymmetrical distribution can be observed. At low frequencies
this indicates a non-diffuse vibration field resulting from the modal behaviour of the components.
At high frequencies three effects lead to the non-diffuse vibration field: the increasing influence of
the direct field around the excitation position, the decrease in vibrational energy with distance and
the weak coupling between the single elements of the components. In the mid-frequency range from
200 Hz to 1250 Hz the interquartile range of the box plots are significantly smaller, which indicates a
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(a) Driving-point mobilities
of the wall
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(c) Box plots of all velocity
levels at floor
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Figure 2: Results of measurement in one-third octave bands for each excitation position k in (a),(b) and for
k “ 1 in (c),(d). The examples (left: f “ 500Hz, right: f “ 2.5 kHz) of spatial level differences in (c),(d) are
related to the minimal level min pLv,norm,iq of the component. [2]

nearly diffuse vibration field. In case of the point excited wall in Fig. 2 (d) there are more statistical
outliers. Two of the thirty measured response positions are located in the vicinity of the junction
between wall and floor. These positions led to some of the statistical outliers with low values.

3. Statistical analysis of the vibration fields

3.1 MONTE-CARLO simulation

Let I P N be the total number of measured response positions on the component and N P N
the size of an arbitrary subset. Furthermore let R P N denote the total number of repetitions of
the drawing procedure and let vnorm,i with i “ 1, 2, . . . , I denote the measured velocity on the i-th
response position in a frequency band f . The complete statistical analysis in this section is based on
the assumption that R “ 200 000 is sufficiently large to apply the law of large numbers [7, p. 343]
and the theorem of GLIVENKO-CANTELLI [8, p. 98]. Different situations are modelled:

3.1.1 Model A: Drawing from all response positions

Firstly the distribution of the spatial average velocity level has to be examined by drawing a fixed-
sized subset with size N from all measured response positions for a particular frequency band f .
Thereby a random variable LpNq

xvy˚ is constructed to predict the spatial average velocity level for the
respective component if only N ď I response positions are used for an excitation position k. In (5)
the set ΩpNq describes all possible random combinations of velocity levels for the drawing without
replacement.

L
pNq
xvy˚ : ΩpNq Ñ R, L

pNq
xvy˚pωq “ 10 lg

˜

1

v20

1

N

N
ÿ

n“1

ω2
n

¸

with ΩpNq “
N
â

n“1

Ωnz

#

ω P
N
â

n“1

Ωn : Dl,m P t1, . . . , Nu : l ‰ m^ ωl “ ωm

+

and Ωn “ tvnorm,1, vnorm,2, . . . , vnorm,Iu for n “ 1, 2, . . . N.

(5)

Based on this model the distribution of the spatial average velocity levels can be approximated.
From this approximation the minimum number of randomly chosen response positions Nmin,k can be
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Figure 3: Minimum number Nmin,k of responses that Lxvy,norm,k ˘ 2 dB is the 95%-prediction interval for

L
pNq
xvy˚,k depending on the different excitation position k as result of the MONTE-CARLO simulation (model A).
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Figure 4: Impact of the y-distance between excitation position k and the centre line of the component ymax
2 on

the interquartile range IQRk of the velocity levels Lv,norm,i,k.

derived for the different excitation positions k to have an acceptable deviation from the spatial average
velocity level of all response positions, see Fig. 2 (b).

Figure 3 shows the minimum numbers of response positions to guarantee a maximum deviation of
2 dB with a probability of at least p ě 0.95. In addition to Nmin,k of the used excitation positions also
the average value over the excitation positions is drawn as a trend line. The minimum numbers Nmin,k

of the floor and wall show a similar frequency dependency. In the non-diffuse frequency range more
response positions are necessary compared to the frequency range with a nearly diffuse vibration field.
The differentiation of the diffusivity is based on the interquartile ranges of the box plots in Figs. 2 (c)
and (d). A strong impact of the excitation position on Nmin can be observed at high frequencies. This
is caused by the different distance of position k to the centre of the component in y-direction. Figure 4
shows the interquartile range IQRk of the velocity levels depending on this distance. Above 1.25 kHz
the width of the interquartile range is increasing with the frequency if the excitation position is on the
left or on the right element of the wall built from three segments.

3.1.2 Model B: Drawing from response positions excluding the boundary/near-field area

For practical applications it is useful to know, how many response positions are necessary to guar-
antee a deviation tmax for several frequency bands. In this example fmin “ 200 Hz is the lowest and
fmax “ 1250 Hz the highest one-third octave band of the interesting frequency range. In this draw-
ing procedure response positions in the vicinity of the component edges and close to the excitation
position are not considered. Only the response positions with the filled circle in Fig. 1 (a) are used for
sub-sampling in this model. I˚ represents the total number of these response positions. The minimum
distances for valid response positions in Table 1 are based on the bending wavelength λB at fmin and
the radius of the nearfield at fmax of the particular components [9].

The following model is an estimation for the probability that the average velocity level determined
from an arbitrary, fixed sized subset of N “ 6 response positions deviates at most tmax P R` from the
average velocity level calculated by all measured response positions I (denoted by Lxvy,norm,f ) for the
frequency band f . The deviation is applied to the average velocity level of all response positions for
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Figure 6: Probability pk for model B that the mean
velocity level determined from any arbitrary subset
of N “ 6 response positions differs less than tmax to
the level of all response positions I “ 30.

Table 1: Minimum distances of response positions to
edges of the building components and to excitation po-
sition for model B.

xmin ymin rmin

m

Wall 0.51 0.26 0.19

Floor 0.67 0.52 ´

Criterion
λB,x

4
(200Hz)

λB,y

4
(200Hz) rH (1.25 kHz)

every one-third octave band in the frequency range from fmin to fmax. BpNq is a dichotomous random
variable with value 1 if ω P Z and value 0 if ω R Z.

BpNq : ΩpNq Ñ t0, 1u, BpNqpωq “
fmax
ź

f“fmin

1Zpωq

with ΩpNq “ t1, . . . , I˚uNztω P t1, . . . , I˚uN : Dl,m P t1, . . . , Nu : l ‰ m^ ωl “ ωmu,

Z :“

#

ω P ΩpNq :

ˇ

ˇ

ˇ

ˇ

ˇ

10 lg

˜

1

v20

1

N

N
ÿ

n“1

v2norm,f,ωn

¸

´ Lxvy,norm,f

ˇ

ˇ

ˇ

ˇ

ˇ

ď tmax

+

.

(6)

Figure 6 shows the probabilities as results of the distributions depending on the permissible deviation.
The deviation have to be fulfilled in all of the nine frequency bands. In case of the floor the probabili-
ties become high only for a high chosen deviation tmax ď 4 dB, but in case of the bottom wall already
for a smaller deviation of tmax ď 3 dB. The more inconvenient spatial distribution of the response
positions of the floor in Fig. 1 (a) could potentially be an explanation for the lower probabilities.

3.2 Linear regression model

The MONTE-CARLO simulations are not suitable to give a proposal for a data-driven optimal
subset relating to the prediction of the spatial average velocity level of the component. To find au-
tomatically such an optimal subset with statistical techniques a linear regression model is built up.
Instead of the well-known mean squared estimation [10, p. 44-49] of the regression coefficients, the
least absolute shrinkage and selection operator (LASSO) [10, p. 68-69] is used here to estimate the
coefficients in the linear regression model. LASSO is a penalised form of the mean squared estima-
tion. The LASSO estimation for regression coefficients is selected, because there is a smaller variance
in the case of nearly multicollinear input vectors [10, p. 61], what could be present due to the spatial
correlations in our experimental setting.

3.2.1 LASSO estimation of regression coefficients

The LASSO estimator for the regression coefficients β “ pβ1, . . . , βIqT is defined in [10, p. 68]:

β̂LASSO “ argmin
β

#

S
ÿ

s“1

pys ´
I
ÿ

i“1

xsiβiq
2
` λ

I
ÿ

i“1

|βi|

+

with λ ě 0. (7)

s stands for the number of observation (S “ 2). For λ “ 0 the LASSO estimation is equal to the
ordinary mean-squared estimation. For simplicity a multiple linear regression with LASSO estimation
is called in the following LASSO regression.

6 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

To apply LASSO regression to this case study the output vector y in (8) consists of the spatial
average velocity levels Lxvy,norm,s,f for the respective frequency band f and measurement repetition s.
The input vectors xi in (9) consist of the velocity levels Lv,norm,i,s,f of the i-th response position.

y “pLxvy,norm,1,fmin
, . . . , Lxvy,norm,1,fmax , Lxvy,norm,2,fmin

, . . . , Lxvy,norm,2,fmaxq
T (8)

xi “pLv,norm,i,1,fmin
, . . . , Lv,norm,i,1,fmax , Lv,norm,i,2,fmin

, . . . , Lv,norm,i,2,fmaxq
T (9)

The structural form of the LASSO regression model is defined in (10).

y “ β1x1 ` β2x2 ` . . .` βIxI ` e. (10)

e is a random error vector with expectation 0 and homogeneous variance greater 0 for the vector
components. (10) means that the normalised spatial average velocity level can be written as a linear
combination of the normalised velocity levels in all response positions. Before the determination of
the regression coefficients βi with LASSO it must be proved if a reduction of response positions in
the LASSO regression is feasible. This is done in the next step.

3.2.2 Model size reduction to find an optimal submodel

In [3, p. 76-82] the author describes four different methods to gradual include response positions
into the LASSO regression model. In this case study only the variable selection with respect to the
Akaike Information Criteria (AIC) is applied.

The model selection starts with a single response position in the model. Further response positions
are added as long as the prediction interval is greater than 2 dB in at least one frequency band. The
model selection is executed for the excitation position k “ 1. In case of the floor the resulting
sequence of response positions is [24,11,16,13] for f “ 100 Hz to 1250 Hz with a maximum 95%-
prediction interval width of 1.96 dB and in case of the wall the sequence for f “ 80 Hz to 1250 Hz
is [25,30,12,13,20] with a maximum 95%-prediction interval width of 1.67 dB. Because in both
cases only very small subsets (Fig. 1 (a)) of all measured response positions are selected, the LASSO
regression models have not the situation of nearly multicollinear input vectors. Therefore the LASSO
estimation is performed as ordinary mean squared estimation for the regression coefficients. In this
case the algorithm in [11, p. 285] can be used to calculate the prediction intervals.

With the chosen models the regression coefficients and bootstrap confidence intervals for the
coefficients (see [3, p. 83]) are calculated. The total number of bootstrap replications is chosen as
RBootstrap “ 8000. In case of the floor the estimating equation for each one-third octave band f
between fmin and fmax is (11) and in case of the wall (12).

EpLxvy,norm,s,f q “0.232p˘0.080qLv,norm,i“24,s,f,k“1 ` 0.401p˘0.049qLv,norm,i“11,s,f,k“1

`0.251p˘0.067qLv,norm,i“16,s,f,k“1 ` 0.123p˘0.045qLv,norm,i“13,s,f,k“1
(11)

EpLxvy,norm,s,f q “0.126p˘0.083qLv,norm,i“25,s,f,k“1 ` 0.173p˘0.026qLv,norm,i“30,s,f,k“1

`0.431p˘0.065qLv,norm,i“12,s,f,k“1 ` 0.158p˘0.050qLv,norm,i“13,s,f,k“1

`0.127p˘0.048qLv,norm,i“20,s,f,k“1

(12)

4. Conclusion

The diffusivity of the vibration fields of CLT-components and the frequency distributions depend-
ing on the number of responses are described by empirical data and MONTE-CARLO methods. In this
case study a nearly diffuse vibration field is available only in some one-third octave bands at mid fre-
quency range. It follows that the determination of energy with few response positions is only possible
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in this frequency range. The determination of energy by velocity is not suitable in frequency bands
without modes. Because in this case the prerequisite of consistency between kinetic and potential
energy is not fulfilled. At high frequencies the position of excitation relating to the position of the
joints of elements in plane has a significant impact on the scattering of the responses. Above all a
high number of responses is necessary at low and high frequencies.

In a second approach an optimal subset of response positions to estimate the average velocity
level could automatically be determined using a linear regression model with LASSO estimation.
The corresponding regression coefficients are calculated with bootstrap confidence intervals. The
LASSO regression also enables to calculate bootstrap prediction intervals. The regression results can
be used for repetition measurements, where only the optimal subset of measurement positions is used.
Thus it spares the measurement of all response positions in the repetition measurement, because it can
be guaranteed that the spatial average velocity level for all positions is within the prediction interval
with a corresponding confidence level.
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