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.H.F. Applications
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I. Introduction

Adaptive processing has been playing an increasing role in spatial

filtering of interfering signals for the last_sevoral years. A typical

adaptive array processing configuration considered in the literature is

shown in Fig. 1. Each antenna element is followed by a receiver and

appropriate amplitude and phase weighting.- These weights, or coefficients

are adjusted periodically using an algorithm which is computed in the

adaptive processor, thus effectively_realising a spatial filter. The

correct choice of the coetficients will ensure the formation of maximum

array sensitivity in the direction of interest and of minimum sensitivity

in the directions of interfering noise sources.

In this paper we consider some aspects of adaptive array processors

which have been treated only partially in the literature, especially for

H.F. applications. First, a robust design of the adaptive array is

_considered with regard to uncertainties in the knowledge of the desired

signal direction (e.g. due to fluctuations in the ionosphere or due to

random errors in the array parameters) and also against signal cancellation

from coherent interferences arising, possibly, from multipath propagation.

Secondly, methods of incorporating adaptiVe processing in some existing

electronically scanned arrays without additional hardware are considered.

In order to illustrate the need for this, the all-digital realization of

Fig. l is seen to require a phase coherent receiver to demodulate each

element output, which in turn is digitized‘lthus requiring a separate A/D

converter) and processed using a general purpose computer. Besides being

expensive, this proposition may not be feasible in certain applications

where coherent receivers cannot be used, e.g. when there is no a-priori

knowledge of the form of signals to be received bv a communication receiving
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system. We therefore consider some alternatives which implement the

adaptive algorithms on an existing, non—adaptive H.F. array antenna

system. The aim here is to bring out the possibility of using a

variety of modifications to suit the specific practical requirements on

Isystem hardware. Finally, results of some experiments with these

algorithms both on simulated and real data are presented.

II. Constrained L.M.S. Adagtive Arrays

The constrained least-mean-s'quares formulation of the adaptive

array processing problem was first proposed by Griffiths Ill. In this

section Iwe consider the basic optimization problem and some additional

constraint systems on it for the design of robust adaptive arrays.

Let C denote the "look direction vector" of the array given by

exp {j (p1 . uCMn/c}

exp (:5 (p2 I. ucM/c}

c = - ‘ ' (1)

exp (j (pn . uCJw/c}

where pj is the 3—dimensional vector of position coordinates of the j'th

sensor, no is a unit vector inthe direction from which the desired signal

is propagating and c is the velocity of propagation.' Let the signals

{x1(k), i = 1, 2, ..., n} appearing’at the n array elementsbe denoted

by a vector x(k) = {x1(k) . . . I xntkn and let

3 him} = 0 _ (2a)

a (xm Pm) = a ' ’ ' (2b).

The output power ofthe array is given by

so = r (Iytk)l2} = WT RW - (3)

where

 



 

n

y(t) = )j w' xi(k) ‘ (3a)
i=1

is the array output, and

W = {wl, w ... , wn} (4)2:

is the weight vector. The problem can now be stated as that of designing

the array weight vector in order to minimize the output power Po, subject »

to the constraint that the gain in the look direction_is held fixed at

unity; i.e.

cTw = 1 ’ ' (5)

The solution of this problem is easily seen to be given by

 

(6)

This solution is, however, very sensitive to inaccuracies in array

parameters like element locations and excitations, and also to the

deviation of the signal from the direction specified by the vector C [2].

Hudson [2| and others I3,4,5I have shown that a reasonable control on the

_sensitivity may be achieved by constraining the length of the optimum

height vector. The problem is then required to be solved under an

additional constraint

wTw s s v . (7)
where, roughly speaking. the value of 5 controls the beamwidth and

superdirectivity of the array.

An analytical solution to this modified problem is extremely

'difficult and not known. Some interesting special cases of the solution

are given in a companion paper '2'. An alternative approach based on

eigenvalue techniques for a related problem has been given by Gilbert and

Morgan I5].

.Finally, consider the case when a coherent interference arriving from

3 Known direction is present in the environment. In order to avoid
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cancellation of the desired signal by anout-of-phase coherent interference,

a simple technique wouid_consist of augmenting the constraint system by an

additional linear constraint

'1' _ .
CI W = o (a)

where CI is the coherent interference direction vector. obviously, however,

this approach is inapplicable if no a-priori knowledge of the coherent

interference direction is available.

111. Implementation

The most commonly employed technique of implementing the steady state

solutions of the problems, considered in the last section, adaptively is by

means of the stochastic steepest descent algorithm. Since this still forms

the basis of the alternatiVes considered later in this section, it is

described very briefly in the following:

A. The Stochastic steepest Descent Algorithm

The method of steepest descent uses gradients of the performance

surface in seeking its minimum, making each change in the weight vector

-proportional to the negative of the gradient vector:

I = —

Wk+l wk 8‘ ‘71:)

= wk -‘BRWk ‘ (9)

In its stochastic version, the covariance matrix R is replaced by its

sample estimate xkx: and ( 9) becomes

win =_wk — e xkyk . (10)

where yk is the output signal of the array at the k'th instant. The

following additional steps are necessary to incorporate the constraints

“EC = l and firw s S of the last section, before going to the next iteration:

(i) W' is projected on the constraint surface ch.= 0 via the projection
k+1

equation:
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II = I _ T I T I .

Iwkfl wM1 cc wkfl/c c (11)

.= 12 wk +1 . (11a)

where P is the projection matrix

I:

(ii) w" is then checked to see if it satisfies IIW [I2 s 5. If not,
k+1 k+l

it is suitably normalised to force this constraint (12)

(iii) The constraint Vector c is finally added to Wfi+1 to satisfy (5):

E u T '

wk” (wkfl)n + c/c c (13)

where (-)n denotes the normalised version of the argument.

B. some Salient Features of the H.F. Array System

In an application, with which the author hasbeen involved, and

which will serve as a typical example motivating investigations into

alternative implementation of the adaptive algorithms, the beamforming

system hasthe following salient features. some of these, it can be seen,

are likely to be typical of most array systems.

1. The system is capable of simultaneously forming a number of

independently controlled beams from signals received from.an array of 24

_elements, in the H.F. band. I ,

2. ‘ The system is computer controlled so that the computer calculates

the appropriate phase shift and gain for each element of the array on

appropriate instructions of frequency, required beam direction and the

required beam shape. The computer stores data on the location of each

element and the beam forming system can be used, in principle, for any

array geometry.

1 3. The system is required to work withonly two, preferably non-coherent

receivers.

4. Array weights are to be implemented with three hits of amplitude and

four bits of phase quantization.

5. - The nominal switching speed of the weights is of the order of 100

beams/sec.
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In View of these features, it is clear that the stochastic steepest

descent algorithm as discussed above is not applicable directly. In

particular, the restriction of at most two receivers makes it impossible

to make all the element signals available simultaneously for adaptive

processing. In the following we discuss two alternatives which incorporate

the above features of the array. Both of these require the formation of

two beams (or channels) simultaneously, one of which is made adaptive while

using the other in a search mode around the former's current setting.

Furthermore, it is assumed that the weights of the two beams are to be

switched synchronously. Finally, for obvious reasons, the weights of the

array are adapted serially (i.e. cyclically),one at a time.

C; First‘Alternative: The Perturbation Algorithm

A schematic diagram of the set-up for_this algorithm is shown in

Fig. 2 and consists of the following steps.

1; Set the adaptive and search beam weights, denoted by wAand ws

respectively, to conventional values. Set k'= l.

2. Find the corresponding receiver output in the adaptive beam. Let

this be yA.

3. Perturb the i'th (i = k mod 2n, k = iteration number, n = number of

weights) weight component or the search beam by one level of quantisation

and let the corresponding search beam output be ys(i). Form the gradient

Y (i) - Y5 A

9 = Ta." ‘1"
where AW(i) is the perturbation in the i'th component.

4. Update the i‘th component of the adaptive beam using

Wl(k+1) = Wl(k) - 89 I (15)

where B is a constant which controls the rate of adaptation and steady state

properties of the processor.

5. Apply the linear (look_direction) and nonlinear constraints using (ll) -

um .. _..__ _. .. '.-..._ .. u . .. . . . .. . .. .. . .. ‘—\...u «us goal-tier; w vuuniu one new canyon": weigut veuLuL n . act. us equal.
~A

4-2

 



  

to WA, k = k+1.

6. Take the next input sample and go to (2).

Remarks: This implementation requires only two non-coherent receivers,

 

and is a close approximation to the steepest descent technique. of section

III—A. A possible source of error may be the mismatch in the gains of the

two receivers. But this can be estimated from the outputs of the two

receivers during the interval when “Sis set equal to WA, and used for

asuitably modifying the value of g in (35) . The form of the incoming

signals is not important since the‘gradient is estimated by a differential

perturbation with boththe beams having the same input. Finally, if the

data rate is higher than the beam switching speed, the intervening samples

may be suitably integrated to yield an average intensity of the signals for

use in the algorithm. I

D. _ Second Alternative: Multiplexing

I When the two receivers availablefor use with the two beams are

coherent, with the capability of yielding information regarding the

amplitude and phase of the carrier, it is preferable touse this second

alternative. In this, the search beam channel is used simply to sample

each element signal cyclically as the data arrives, by switching the

search beam weights in a multiplexer mode. Each sample is- then used to

update the corresponding weight component in the adaptive beam in

accordance with 'eqn. (10) .- After a complete cycle ofsuch updates

(stored in the computer) , the constraints (11) - (13) are applied and the

weights quantised for use in the next cycle.

The problem of receiver gain mismatch again exists but is more

difficult to compensate for, in this case. One way of doing it would be

to compare the outputs of the two receivers periodically by using th in

the same mode .

E . convergence Properties

The two alqorithms proposed above are essentially suboptimal
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implementations of the steepest gradient algorithm of section III - and

hence have very similar features regarding their convergence behaviour.

Some of the important points are summarised below:

(1) Convergence is assured for all values of B lying in the range

2
°<B<tr(PRP) (16)

where P is the projection matrix defined in (11).

An important difference, however, now exists in the use of the

feedback coefficient 8. In the case when all the element signals are

available simultaneously, this can be normalised against_signal power

variations by the factor xixk = tr (xkxt) at each instant. In JII—C and

III-D, however, this will have to be achieved by prior signal

normalization i.e., before-feeding to the adaptive processor.

(ii)' The rate of convergence is directly proportional to the value of 3.

However. larger values of B-in the range given in (16) yield large amounts

of loop or gradient noise in the steady state. It can be shown that the

steady state gradient noise power is given by

-Gn = 8 P50 tr (PEP)

=IB Pso (tr R - PC) I (17)

where rso= Desired signal output power from the optimal array

PC =.0utput power of a conventional array

Thus the output SNR is given by

' L 1 ' _ 1
(S/N)O—Btr(PRP) _ 8 (trR—Pc)

IV. Experimental Results

Two sets of experiments have beenconducted using the above algorithms.

In the first, an B-element circular array was consideredand fed with data

simulating various conditions. The eecond'set of experiments have been

performed on some real data from a 7-e1ement, A-shaped array and provided by
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Christopher Thomas of Leicester University. Some of these results are

briefly described in the following.

A. Experiments with Simulated Data

(1) Radiation Pattern Typical radiation patterns of the array, before

 

and after adaptation are shown in Fig. 3, in which a 0 dB source at 0°

and a 20 dB interference atlcx? were simulated. The null depth achievable

in these experiments was seen to be strongly related to the strength of the

interfering source. The stronger the interfering source, faster the rate

of convergence and larger the null—depth. Typically, about 50 cycles of

iterations in implementation of III—C and III-D are necessary to reach

steady state.

Fig. 4 illustrates some typical results for output SNR as a function

of the input SNR, obtained by freezing the weights of the array after 50

iterations, again for an Beelement circular array with A/2 spacing.

(ii) Effect of Random Errors' rhe degradation in performance due to random

errors in the array parameters is seen to depend on the model employed for

these errors. If the errors are assumed to be constant (but unknown) over

all iterations (e.g. errors due toinaccurate locations of the array elements

of a rigidly fixed array, or due to imprecise knowledge of the signal

direction), there is seen to be little degradation in the null-depth in the

direction of the interference. The effective SNR, however, may be highly

degraded due to loss of gain in the signal direction. But incorporation of

the superdirectivity constraint (7) with suitable choice for the value of s,

can control this effect by desensitizing the response of the array in a

Vsmall sector around the look direction. Typically, about 10-15; errors in

the effective weights can be tolerated with the help of this constraint.

On the other hand, if the errors are truly random and vary from

iteration to'iteration (e.g. errors in the attenuators and phase shifters'

settings), the degradation in SNR is more serious since it is caused by losses

both in the signal gain and null—depth. Fig. 5 shows the null-depth achieved
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  in an B—element circular array for a 20 da interference at 45° hearing, as

a function of the r.m.s..errors while constraining the norm of the weights

to unity. The performance is seen to degrade very much after about 205

errors.

(iii) Coherent Interference If an interference is fully or partially

coherent with the signal from the look direction, there is once again a

loss in the output SNR. This loss is a function of the correlation

“coefficient between the two. In a typical ionospheric, multipath

environment at H.F., this coefficient is a function of the path length

difference between the look direction and interfering signals. Fig. 6

shows a typical behaviour of the null-depth against correlation coefficient.

In general, the effect of adaptive processing in such an environment

is seen to be that of combining the two signals in nearly equal strength,

although in_arbitrary phase. The result is a loss in the desired signal

power. This phenomenon is seen to disappear when the constraint (8) is

included in the algorithm.

B. Experiments with Real Data

 

Data was recorded from a 7-e1ement, A—shaped array whose geometry is

shown in Fig. 7. The data at each element was recorded from the outputs

of coherent receivers (with I.F. bandwidth of 100 Hz) with‘in—phase and

quadrature phase channels on to cassettes through A/D converters and via a

PDP-ll computer. The data was then transferred onto a discifile of a

Modular-l computer for further processing and experiments.

Two sets of data were recorded from a source (frequency a 1.34 MHz)

at different times of the day and are quite typical of situations which may

be encountered in H.F. applications. The total recorded interval in each

case was approximately 3 minutes ‘and 15 sedonds, containing about 470 data

samples. Although from the same source. the two sets of data have an

interesting difference. While the first set had mainly a ground wave

component, a significant contribution in the second set also came from

492.

  

   



  

skywave due to a decrease'in the D-region absorption at the time of its

recording.

In order to conduct the adaptive processing experiments on this

data, a number of beams looking in different directions were simulated

on the computer and the output power of each was displayed. The source

therefore, acts as an interference for all but the beam pointed in its

direction. The results are summarised in Figs. 8 and 9.

Fig. 8 shows the result of conventional and adaptive processing on

the first set of data by forming 90 beams distributed over the entire

azimuth and an elevation of 0° (groundwave). The outputs of adapative

processors using all the three algorithms are illustrated in the figure.

The signal is clearly seen to arrive from the dominant peak at about 130° —

the outputs of all other beams being considerably lower.than thoseof the

corresponding non-adaptive beams. The second dominant peak seen in this

figure is ascribed to the grating lobes.

For the seCOnd set, an extensive Search both in azimuth and elevation

showed that the skywave component arriving at an angle of 700 was

significantly stronger. This was demonstrated by the fact that efforts to

receive a signal by an adaptive array looking at the groundwave component

resulted in about 10 dB loss in signal power. The corresponding effort at

70°, however. resulted in a loss of only about 1.5 dB. The reason for this

loss, of course, is the presence of the coherent interferenceT the weaker

signal getting more suppressed than the stronger signal in adaptive array

processing. Thus Fig. 9 shows the results obtained with this data at 70°

.elevation.

Both these experiments confirm the possibility of obtaining deep

nulls in the interference directions using the modified algorithms presented

in these papers. Except in the case when a correlated signal arrives from

a widely different, unknown direction as in case 2 above, theperformance

of these algorithms seems to be entirely satisfactory.
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Fig. 1 An all Digital Adaptive Array
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Pig. .2 The Perturbation Algorithm
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Fig. 7 The Blake H111 Array
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