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1. ' INTRODUCTION

The phase retrieval problem arises in microwave imaging applications where the
phase is either lost or impractical to measure. In the majority of electro-
magnetic scattering problems, the cbject size or support will be known, a
priori. In some circumstances however the support of an object may not be
defined by -a simple geometrical shape or the support may not be known at all.
Such cases of phase retrieval may have arisen in the original fields of optics,
electron microscopy and crystallography. However they will occur in microwave
applications, for example, single view imaging of concealed objects and
diffraction tomography.

The complex nature of the ambiquity problem between the phase and the modulus
of the Fourier transform implies that the direct analytical solution to this
problem is not possible. In certain one-dimensional scattering problems the
ambiguity between transform phase and modulus may be eliminated. This situ-
ation may also be the case for some two dimensional scattering problems, but
generally speaking, these cases are very restricted and not practically rele-
vant. For these reasons, iterative techniques which rely upon the availability
of additional information in the form of a second intensity measurement have
become attractive alternatives. Two commonly known iterative techniques
(Gerchberg and Saxton, and Misell) have already been studied by the authors on
data obtained from microwave antenna measurements [1]. It was found that the
data requirements from the Gerchberg and Saxton algorithm was not only im-
practical but that the results obtained were not satisfactory. The Misell
algorithm was, on the other hand, much superior but its use is again practic-
ally limited to a few microwave diagnostic situations. To eliminate the
severe limitations of these two algorithms the new technique, which is partic-
ularly relevant to the wavelength regime of microwave diagnostics, was
introduced. Studies on the convergence as well as the practicality of the
algorithm were found to be promising. 1In this present paper the dependence of
this algorithm on the object support has been investigated using both simulated
and measured data. The extension of this approach to tomographic imaging has
" also been investigated.

2. THE EFFECT OF OBJECT SUPPORT ON THE CONVERGENCE OF THE
PLANE-TO-PLANE DIFFRACTION ALGORITHM

The plane-to-plane diffraction algorithm given in Appendix 1 involves the
spectral propagation of a complex estimate formed at the object domain back
and forth between two arbitrary data planes. The algorithm does not only
eliminate the need for the measurement at the object domain, but offers vers-
atility in the selection of the two planes anywhere in the near-field, which
means that far-field measurements are not essential.

A simple proof of the convergence of the algorithm based on the reduction of
error energy is given in the Appendix 2 and it is seen that the object domain
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constraints are an important feature of the algorithm. Therefore studies of
the performance of the algorithm are interesting when the object support is
either not known at all or only a crude estimate of the object support is
available. The results of some numerical studies for these cases are presented
in section 4.

3. APPLICATION OF THE PLANE-TO-PLANE DIFFRACTION
ALGORITHM TO MICROWAVE TOMOGRAPHY

The investigations reported hitherto have been directed towards the recon-
struction of effectively planar objects, e.g. an antenna aperture. Consider
now a typical diffraction tomographic measurement of an object which is
assumed to be cylindrical and hence the field along its axis is ideally in-
varia?t. The scattered field measurement at line 20 in rotated axis is given
by [2

_ : J koz—azlo 5
ulazl ) = f~—i———— e O(o,vk *-a® - k)
° 2k Tar ° °
8]
for |a| < k, (1)

Equation (1) is the mathematical expression for the Fourier diffraction theorem
and relates the two dimensional Fourier transform of the object
ﬁ(u,/koz—az - ko) to the one dimensional fourier transform of the scattered

field U(u;%o) at the scan line. Note that the two dimensional Fourier trans-

form of the object is confined to the spatial frequencies, o, within a semi-
circular arc at a distance /2 ko from the origin at the frequency. domain.

Equation (1) can be employed with the plane-to-plane diffraction algorithm for
retrieving the phase from two sets of one-dimensional modulus data taken at
arbitrary measurement planes for the number of views considered. Having
obtained these data for each view angle at two arbitrary measurement planes,
the algorithm starts with a complex initial trial function and involves the
following steps.

i. Reduce the 2D complex object estimate to 1D and propagate the first data
plane for every view according to equation (1)

ii. Apply the constraint and back propagate the resulting estimate back to
the object domain from each measurement plane for every view

iii. Reconstruct the new two dimensional object estimate by using either
space [3] or frequency domain [2] techniques

iv. Constrain the new two dimensional complex object estimate

V. Go back to the first step and repeat the process for the second measure-
ment plane

This process is repeated until a satisfactory convergence is obtained. Note
that in reducing the two dimensional object to one dimension the largest

object constraint is retained. For this reason the algorithm can be shortened
significantly since the 1D instead of full 2D object support is used. Although
such a modification to the algorithm is ill-defined in that the phase of each
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(a) : Aperture phase distribution reconstructed to 2.5% accuracy by using
the plane-to-plane diffraction algorithm with exact object size
support after 20 iterations.

(b) : Amplitude only reconstructed phase distribution by using plane-to-
plane diffraction algorithm with no size constraint after 20 iter-
ations.

(c) : Amplitude only reconstructed phase distribution with 1.2 times the
true aperture size used as the constraint.

(d) : Amplitude only reconstructed phase distribution with 0.8 of the
true aperture size used as the constraint.
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projection must now be recovered in 1D for every view, some satisfactory
results have been obtained.

4. RESULTS OF SUPPORT SIZE VARIATION ON RECONSTRUCTION
OF ANTENNA APERTURE PHASE

To demonstrate the performance of the plane-to-plane diffraction algorithm
against the support, the aperture phase distribution consisting of simulated
phase aberrations representing Gaussian type surface profile deformities
superimposed on a background phase is used. The measured data were obtained
from holographic radiation pattern measurements performed at a frequency of
10GHz on a 3.66m reflector antenna [1]. Using the modulus information at two
measurement planes at 20m and 150m away from the antehna, the results in
Figure 1b, lc and 1d were obtained. Further numerical“studies have also been
carried out to investigate the performances of two other iterative algorithms
when the precise support of the object is not known, and these were not
successful.

5. PRELIMINARY INVESTIGATION OF MODULUS ONLY TOMOGRAPHIC RECONSTRUCTION

An interesting application of phase retrieval techhiques may arise in tomo-
graphy. Presently, the plane-to-plane algorithm is the only one which could
be applied practically to reconstruct 3D objects from 2D scans. »

Shown in figure 2 are the reconstructed phase and amplitude of a coeccentric
dielectric cylinder of 10 wavelengths radius from 36 views of complex scattered
field at scans 15 wavelengths away from the centre of the cylinder. The fields
are computed from the exact analytical expressions and used in the reconstruc-
tion process [4]. Figure 3 shows the reconstructed cylinder from modulus only
data at measurement planes 12 and 20 wavelengths from the centre -of the
cylinder by using the modified plane-to-plane diffraction algorithm described
in section 3 for 60 views. Although only a simple largest object support

(i.e. diameter) is used to constrain each estimate at the object domain,
satisfactory reconstruction is obtained except for the singularity in the
centre portion of the image which is an artesfact of the band limitation of

the propagation filter.
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Iterations return to step 1 and continue until a satisfactory convergence is
obtained. In equations above, Hgi; Hio and Ho,3H,o are the forward and back-
propagation filters for the associated distances between the obJect and first
and second measurement planes respectively. They are given as :

Ho: = exp(jk|zy|m)
Hoo = exp(jk]z2 m)
m=v/1- (Asx)? - (Asy)?
where X\ = free space wavelength
k = free space propagation constant

sx;sy : fourier domain variables

Az. A proof of convergence based on the error reduction

The convergence of the algorithm may be monitored by computlng the squared
error. Based on the additional constraint provided by the object support it
may be proved that the error energy during the successive iterations is
reduced. ‘

For the k'th iteration the error energy at the object domain is given by :
2 - ' 2
SAESIINCR)
0

From step i the error energy at the first measurement plane for the two
successive iterations are

Z‘gk(zl> -g' k(Zl)i

Ek+l)l = 2|gk+1(21) - g'k(21)|2
- Z3

By definition g (z,) is nearer to the complex . function whose modulus
k+1 : P 4

is measured as it represents the propagation of the,constrained‘and improved
estimate of the complex object function. Thus

(e)1 S g,

From step ii the error energy at the obJect domain

2 - 2
E(ke1)o = g |9k+1(zo)\
o
It is clear that

2 2
(k+1)0 S Eko

From step iii the error energy at the second measurement planes for the same
iterations are
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APPENDIX
Al. Steps of the Algorithm

The algorithm consists of the following steps for the k'th iteration.

Step i : propagate the k'th estimate to first measurement plane at z=z,
9" (z1) = FT7HFT{g" (z )} Hoa} = |g' (z1)]exp(in(z1))

and constrain the new estimate with measured modulus |F(zl)‘ in
the domain B of the first measurement plane.

9,(z1) = [F(z1)[exp(jn(z1)) if x13y:¢€B
9,(z1) = 0 if x15y1¢B
Step ii : back propagate the new estimate of the first measurement plane to

the object domain
9' (z,) = FT7HFT{g, (z1)} Hio}

and constrain to the object domain A

gk(zo) gk'(zo) if xo;yoeA
gk(zo) = 0 if xo;yoﬁA

Step iii : prdpagate the new object estimate to second measurement plane
at z=z,

9", (z2) = FT7H{FT{g (z )} .Hoo} = lg", (z2) |exp(gn(z.))

and constrain the new estimate

9, (z2) |F(z,) |exp(in(z,))  if x;3y.€B

0 if  x,3y.¢B

gk(z2)

Step iv : back proﬁagate the new estimate from second measurement plane
to object domain

91 s1(2o) = FTHFT{g, (z2)}.Hoo]

and constrain
. - 1 3 . .
gk+l(zo) =49 k+l(zo) if xo,yo,eA

gk+l(zo) = a if ><o;yo;iA
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E|2<2 = Z lgk(zz) - g'k(Zz)Iz
2

Ek+l)2 = z ng+l(22) - g|k(zz)\2
Zo

As in the first plane, by definition, gk+1(22) is nearer to complex scattered

field whose moedulus is measured. Thus

2 o 2
(ke1)2 = Fieg

It may be proved that

2 < F2 2 ¢ p2
Elke)2 5 B(ke)1 *Fig © e,

which is the consequence of the fact that the error energy is reduced from
one estimate to the next as propagation from first measurement plane to the
second measurement plane is via the object functions for which the successive
estimates are improved with proper object domain constraints. After (k+1)st
iteration the error energy at the object domain

Elks2)0 * z (91 (20017
0

which is nearer to the complex object function. Thus

2
Ek 2

2 > 2
o (k+1)0 = ~(k+2)0

which means the error energy can only decrease or remains the same at each
iteration.
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