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INTRODUCTION

The method presented here allows the prediction of acoustic propagation over a multiply layered

porous elastic ground from a point source. The last field method ofprediction of acoustic propagation

relies on solution of a depth separated wave equation for up anddown going wavelield in each layer

in terms of horizontal wavenumber and depth. Because this solution is depth dependent only, the

environment can be depth dependent only, and hence range independent.

The range dependent solution-is then obtained by the application of a fast fourier transform approx-

imation to a Hankel transform of the depth dependent solution in terms of horizontal wavenumber.

In this paper the global matrix method of obtaining the depth dependent solution, used by Schmidt

[7], is used. The set of simultaneous equations from which the solution is obtained are equations

of continuity of parameters at the layer interfaces, using a modified Biot Stall model, as set out in

Sabatier et al

Richards‘ [6] method is used for the reduction of oscillations in the range dependent solution to

produce an accurate model of propagation over a multiply layered poro-elastic ground surface.

This method is then used to examine the effect of including elasticity of the solid frame in predictions

of excess attenuation over snow. The ability to predict normal surface impedance over multiply

layered ground surfaces is used to deduce ground structure from measured impedance.

Bror STOLL MODEL

The multilayered pom-elastic model is an extension of Sabatier‘s poro—elnstic single layered model

[5] .This model is based on a modified Biot-Stoll theory [3][10][2] and assumes plane wave incidence.

There are three difl'erent wavetypes; fast,slow and shear. These are derived from a solution to the

Biot-Stoll equations for wave propagation. Inputs used to calculate propagation constants are; fast

wave speed( I), ), shear wave speed( v, ), bulls modulus of solid material( Ir; ), porosity ( fl ), angular

frequency( w ), flow resistivity ( a ), fluid density ( p, ), material density ( p ), grain shape factor (

n’ ), and pore shape factor ratio ( s, ). ' I.

PLANE WAVE MODEL GIVING THE DEPTH DEPENDENT SOLUTION.

The depth dependent Greens function part of the integral can be found using the same boundary

condition equations as for a plane wave incidence model [5]. At each boundary a set of boundary
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condition equations in terms of up and down going particle displacements due to each of the wave

types is calculated. The number of boundary conditions depends on the type of interface.

Sabatiers model involves a single poroelastic layer over an elastic halfspace, leading to four boundary
conditions at the air to layer interface. and five at the layer to half-space interface.

This model involves six boundary conditions for each pore-elastic to pow-elastic interfaces as follows;

1. Continuity of normal frame velocity.

2. Continuity of fluid pressure.

3‘ Continuity of total normal stress .

4. Continuity of tangential stress.

5. Continuity of normal fluid velocity.

6. Continuity of tangential frame velocity

Of these boundary conditions numbers 1,2.3,and 4 are also boundary conditions for the air to poro-

elastic interface and 2 and 5 are also boundary conditions for air-air interfaces. Each layer has its

own boundaries as local origins. The amplitudes in the pore fluid and solid frame and the boundary
condition equations are formulated in Sabatier et sl [5] for five of the six conditions ,the sixth may
easily be calculated.

The coefficients of the boundary condition equations for each interface are mapped onto a single

global array G of side p = 6n+4 where n is the number of layers, as shown in figure 1, and then the

equation;
G: = A (U

is solved for the wave amplitude: :(1)to :(p),where A is a matrix of the incident wave terms in the
boundary condition equations. The acoustic pressure, for example, can then be calculated knowing
the propagation constants, reflection coefficient and angle of incidence. The sound pressure level or
particle displacement at any point in a many layered system can be modelled by this approach.

Figure 1. Mapping of interface boundary condilion equations onto global mnlrix
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RANGE DEPENDENT SOLUTION

THE DEPTH SEPARATED WAVE EQUATION

The basis of the FF? method of predicting pressure and wave amplitudes in a range independent
environment from a point source is the depth separated wave equation From a linear wave
equation in terms of wavefield potentials:

, 18’[v +c—IW \I!(r,z,t)=H(r.z,t) _ (2)

where 8(1', 1,!) is the forcing term. By applying a Fourier transform in time one obtains a frequency
domain wave equation, the Helmholtz equation:

(vI _ k3,.) rm. 2,”) = H(r,z,u) (a)

where km is the propagation constant in the medium Applying a forward Hankel transform in terms

of range: a:
GU...) = /_a J,(Ic;..r).g(r,z).r.dr (4)

to the Helmholtz equation one then obtains the depth separated wave equation:

'1’ a 2d? + (I: - gum) mm) = H(k,z) (5)

This equation is depth dependent only and is equivalent to the wave equation for continuous plane

wave incidence, and hence has the solutions given by the above plane wave models In order to obtain

a range dependent solution one simply performs the inverse Hankel Transform on the solution to
equation 5 . which is in terms of horizontal wavonusnber. The transform (integration) over hori-
zontal wavenumber is equivalent to an integration over all angles of incidence. where the horizontal

wavenumber is the horizontal component of the wavenumber in the medium. So the sine and cosine
of the propagation angle 0,-in each medium is calculated as follows:

2 t
sinflg = 7—“ map =( _ (6)

.

Where In. is horizontal wavenumher, and l.- is the propagation constant in the relevant medium, of

the relevant wavetype.

Tar. FFP METHOD or INTEGRATION

The exact range dependent solution is in the form
on

n”, = k J.(Irp..:).l‘(k;.,d).dk,, (7)
Fa I

Where F is the output parameter (pressure, particle velocity, etc) and I‘ is the corresponding depth
dependent Greens function, For a reooiver in the upper half space the depth dependent Greens
function ( F ) for pressure is as follows [7]:

r = “,2 [—1- LIA. —M,i.,. mu.) ..A.+A..l.. :oon)casoolue +:(1).e (8)
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The exact solution (equation 7 )is the inverse Hankel Transform pair to equation 4. The order of

the Bessel function J| is dependent on the output parameter required and is zero for pressure. The

above equation can be approximated to the sun: of two Fourier Transforms which are approximated

by Fourier series.

A large argument approximation to the Bessel function [1] is:

 

In”) 2 21“ [ei(z-lvli—Irll) + c—i‘x-Iu/Z-w/Q] (g)

This approximation together with the replacement of the integration by a finite sum gives the ap-

proximate equation for Pu,“ :

ikN‘” AWN“ _. m ' "MN" -1 a...“
Puma) : rm”: 2 Z rumdle: I? + e Z: I‘Uh'dyiTe‘T (10)

n=0 n=D

So I‘ is calculated for a set of values of horizontal wavenumher Icy. = It,| corresponding to values of n

from 0 to N —- 1 where:
k" = 194mm, + mile (11)

This Fourier series approximation can then be improved by corrections to allow for the truncation

of the integral to infinity to a finite wavenumher, the discretization of the integral and the avoidance

of pole(s) on the real. axis, which together lead to inaccuracies and oscillations in the result. The

method used to achieve this is that put forward by Richards [6] .This involves the choice of two

variable parameters a and A . and the modification of the depth dependent integrand. The final

form for the Hankel transform is:

 

(tn-d) =

N-i N-I , a” _ I"

:kNl rim 2 Cum)" "in"? + "W Z Cu»-..th "' ‘ I l (12)
7”" n=0 “=0

where: '

CUM, = Gummy: — ia)'1/' + G(.,,_hd)N“/’5' (13)

with: iNF

Gama) = “than + 4a? [1 — ‘(A('°_")/N)] (14)

and S‘ is an approximation to the sun of the series 5 where:

s = in + {(n -ia)/~1)-‘" (15>
[=1

OUTPUT
I

The output from so called fl'p programs is range dependent. From this model the output could be

in terms of pressure, or any other parameter in any of the solid or fluid layers, here only the excess

attenuation in pressure predictions are presented.

Using the depth dependent solution normal surface impedance at some angle of incidence can be

predicted.
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War Sou.

Crammond and Don [4] have conducted measurements of soil normal surface impedance using an
impulse techniques They found that when they examined the normal surface impedance of a soil

which had been artificially wetted, both sharp and rounded peaks in impedance at certain frequencies

resulted(see figure 2). Furthermore they found that even achange in source or receiver position of a

few centimetres resulted in a large change the frequencies and amplitudes of the peaks in impedance
On examination of the soil it was found that a thin wetted layer one to two centimetres deep existed

at the surface. Using soil parameters derived from analysis of the surface impedance of the dry

soil given by Crammond and Don [4] and assuming anincrease in flow resistivity and a decrease

in porosity in the wetted layer. it was attempted to produce a predicted normal surface impedance

similar to those measured. This was done by the use ofthe depth dependent code (see figure 3). It
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was found that in the parameter range studied the impedance was extremely sensitive to changes in

some of these parameters; corresponding to the large changes in measured impedance with position.

The parameters used to produce the results are not yitireiy realistic; in particular the tortuosity(

given by 5'1"“ ) in the wetted layer was unusually high, and the seismic wave speed contrast is not

that which would be expected, However, the results do show that with acombination of acoustic

(slow wave) and seismic (fast wave) resonances. both the smooth and the sharp peaks in Crammond

and Don's data can be predicted.
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Snow

Seismic wave speeds as a function of density are given by Sommerfeld {8] from a variety of sources

and these have beenextrapolated to low densities for this paper. The lack of literature makes

the choice of attenuation factor in this study a little arbitrary. The four pore structure dependent

parameters in the modified Biot Stoll model(fiow resistivity a,porosity ft,grain shape factor n’ and

pore shape factor ratio .1, ) have been derived for snow from Attenborough and Buser’s work[9]. For
a semi-infinite snow layer the efl'ect of elasticity is small, but for a thin snow layer on a rigid ground

surface, there are some frequencies and geometries where a difference of up to six decibels in excess
attenuation is predicted due to snow elasticity (see figure 4),

Figure 4 Predicted excess attenuation over 8cm snow layer
Source and reiv trn, ronjm.
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DISCUSSION

  
it has been shown here that acoustic-seismic coupling effects can be important in the normal surface
impedance of wetted ground surfaces, although the exact nature of the seismic discontinuity in this
situation is unclear.

When the effect of frame elasticity in snow is examined the effect an a half-space is negligible. Near
to the ground surface, on the other hand, over thin snow layers, there seem to be some frequencies
and ranges where a significant change in predicted excess attenuation may he found, due to frame
elasticity effects, although the size of this difi'erence is very sensitive to the seismic attenuation in
the snow and the actual magnitude of this attenuation is not well known.

     

    

  

  
  

        
 
  
 

References

[1] Abramowitz M. ,Stegun LA. Handbook of Mather/notice! Functions 1970 New York: Dover

[2] K. Attenborough. 0n the acoustic slow wave in air filled granular media. J.Acau:t.$aciAm..
81(1):93-102, Jan. 1931.

[3]' M.Ai Biot. Theory of propagation of elastic waves in a fluid saturated porous solid.
J.Acoust.50c.Am.,168-191, 1956.

Proc.l.O.A. Vol 11 Part 5 (1989)



 

Proceedlngs ot the Instltute of Acoustlcs

AN ACOUSTIC PROPAGATION MODEL ALLOWING A MULTIPLY LAVBRED POROELASTIC GROUND

[41] AJ. Crammond and CG, Don Efiecta of moisture content on soil in‘ipedance J.Acoiut.Soc.Am.,
82(1):293-301, 1937.

[5] Sabatier 1M. Bass 3.13. Boien L.M. Attenhorough K. and Sutry V.V.S‘S. The interaction
of airborne sound with the porous ground: the theoretical formulation. J.Acau1¢.$oc,Am,,
19(5):x345-1352, May 1936.,

' [6] Richard: T.L.and Attenborough K. Accurate FFT-bued Hankel Transforms for Prediction: of
Outdoor Sound Propagation J. Sound and Vib. , 109(1):157_167, 1986

[7] Henrik Schmidt Safari User’s Guide May 1987

[8] Sommerfeld R.A.' A Review 01' Snow Acoustics Reviews ofGerilyaicr and Space Physics 20(1):
Feb 1982, “282-66

[9] Aflenborough K. and Dual, 0. On the Application of Rigid Porous Models to Impedance Data.
for Snow Ji Sound and VIII. 124(2)(1988)2 pp315-327 '

[10] Bio! MA» Mechanics of Deformation of Acousticfropagation in Porous Media J. Appi, Phys
33 (1982) ppl482-1498

21 February 1989

Proc.l.O.A. Vol 11 Part 5 (1989) 229  



  

   

   

Proceedings of the Institute of Acoustics

Proc.l.O.A. Vol 11 Perl 5 (1989)


