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INTRODUCTION

The method presented here allows the prediction of acoustic propagation over a multiply layered
parous elastic ground from a point source. The fast field method of prediction of acoustic propagation
relies on solution of a depth separated wave equation for up and down going wavefield in each layer
in terms of horizontal wavenumber and depth. Because this solution is depth dependent only, the
environment can be depth dependent oanly, and hence range independent.

The range dependent solution is then obtained by the application of a fast fourier transform. approx-
imation to a Hankel transform of the depth dependent soclution in terms of horizontal wavenumber.

In this paper the global matrix method of obtaining the depth dependent solution, used by Schmidt
[7], is used. The set of simultanecus equations from which the solution is obtained are equations
of continuity of parameters at the layer interfaces, using 2 modified Biot Stoll model, as set out in
Sabatier et al [5).

Richards’ {6] method is used for the reduction of oscillations in the range dependent solution to
produce an accurate model of propagstion over a multiply layered poro-elastic ground surface.

This method is then used to examine the effect of including elasticity of the solid frame in predictions
of excess attenuation over anow. The ability to predict normal surface impedance over muitiply
layered ground surfaces is used to deduce ground structure from measured impedance.

BioT STOoLL MODEL

The multilayered poro-elastic model is an extension of Sabatier's poro-elastic single layered model
(5] .This model is based on a modified Biot-Stoll theory [3][10][2] and assumes plane wave incidence.
There are three different wavetypes; fast slow and shear. These are derived from a solution to the
Biot-Stoll equations for wave propagation. Inputs used to calculate propagation constants are; fast
wave speed( v, ), shear wavespeed( v, ), bulk modulus of solid material{ & ), porosity ( 2 ), angular
frequency( w ), flow resistivity ( @ ), fluid density ( py ), material density ( ¢ ), grain shape factor (
n' ), and pore shape factor ratio ( s; ). : s

PLANE WAVE MODEL GIVING THE DEPTH DEPENDENT SOLUTION.

The depth dependent Greens function part of the integral can be found using the same boundary
condition equationa as for a plane wave incidence model {5]. At each boundary a set of boundary
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condition equations in terms of up and down going particle displacements due to each of the wave
types is calculated. The number of boundary conditions depends on the type of interface.

Sabatiers model involves a single poroelastic layer over an elastic halfspace, leading to four boundary
conditions at the air to layer interface, and five at the layer to half-space interface.

This model involves six boundary conditions for each poro-elastic to poro-elastic interfaces as follows;
1. Continuity of normal frame velocity.
2. Continuity of fluid pressure.
3. Continuity of total normal stress .
4. Continuity of tangential stress.
5. Continuity of normal fluid velocity.
6. Continuity of tangential frame velocity

Of these boundary conditions numbers 1,2,3,and 4 are also boundary conditions for the air to poro-
elastic interface and 2 and 5 are also boundary conditiona for air-air interfaces. Each layer has its
own boundaries a3 local origins. The amplitudes in the pore fluid and sclid frame and the boundary
condition equations are formulated in Sabatier et al (5] for five of the six conditions ,the sixth may
easily be calculated.

The coefficients of the boundary condition equations for each interface are mapped onto 2 single
global array G of side p = én+4 where n is the number of layers, as shown in figure 1, and then the
equation;

Gr=A . (1)
is solved for the wave amplitudes z(1)to =(p),where A is a matrix of the incident wave terms in the
boundary condition equations. The acoustic pressure, for example, can then be calculated knowing
the propagation constants, reflection coefficient and angle of incidence. The sound pressure level or
particle displacement at any point in a many layered system can be modelled by this approach.

Figure | Mapping of interface boundary condition equations onto global motrix
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RANGE DEPENDENT SOLUTION

THE DEPTH SEPARATED WAVE EQUATION

The basis of the FFP methed of predicting pressure and wave amplitudes in a range independent
environment from a point source is the depth separated wave equation [7]. From a linear wave
equation in terms of wavefield potentials:

2
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where H(r, z,t) is the forcing term. By applying a Fourier transform in time one obtains a frequency
domain wave equation, the Helmholtz equation:
(V7 - k2) ¥(r,2,w) = H(r, z,w) (3)

where k,, ia the propagation conatant in the medium. Applying a forward Hankel transform in terms
of range:

- -]
Gy = | _ Jilnr)g(r,2)rdr (4)
to the Helmholtz equation one then obtains the depth separated wave equation:
d? 1_ g2
T+ (B - kL)) ) ¥k, 2) = H(k, 2) (5)

This equation is depth dependent only and is equivalent to the wave equation for continuous plane
wave incidence, and hence has the solutions given by the above plane wave model. In order to obtain
a range dependent aclution one simply performs the inverse Hankel Transform on the solution io
equation 5 , which is in terms of horisontal wavenumber. The transform (integration) over hori-
- zontal wavenumber is equivalent to an integration over all angles of incidence, where the horizontal
wavenumber is the horizontal component of the wavenumber in the medium. So the sine and cosine
of the propagation angle &;in each medium is calculated as follows:

a4
sind; = t—:‘ cosd; = (1 - ’:—;‘) (8)

i
Where k) is horizontal wavenumber, and i; is the propagation conetant in the relevant medium, of
the relevant wavetype.

THE FFP METHOD OF INTEGRATION

The exact range dependent solution is in the form

Few= [ 30 ) (ks ).y ™

Where F is the output parameter (pressure, particle velocity, etec) and T is the corresponding depth
dependent Greens function. For a receiver in the upper half space the depth dependent Greens
function ( T' ) for pressure ia as follows [7):

et Iho=hello.conldo) o g1 gihuthe o con{fo) (8)

—_ i
r= pu [Cosou.lu
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The exact solution {equation 7 )is the inverse Hankel Transform pair to equation 4. The order of
the Bessel function J, is dependent on the output parameter required and is zero for pressure. The
above equation can be approximated to the sum of two Fourler Transforms which are approximated
by Fourier series.

A large argument approximation to the Bessel function [1] is:

13 i{z=mf2 = —i{z=wpf2=n
RAOE Sy [e{ fa=rml4) 4 gmilamrv/i= "}] (9)

This approximation together with the replacement of the integration by a finite sum gives the ap-
proximate equation for Fi;q)

SkN1? PR N-1 -1 ’ ‘-w“N_l =1 =lwmn
F(:...,d) = 2_—-1rm|/" [ z l"(,,“_d)nTe o4 z I‘(,,ﬁ_d)nTe N (10)
n=0a n=0

So T is calculated for a set of values of horizontal wavenumber ks = ky, corresponding to values of n

from 0 to N — 1 where:
kﬂ = kh(!m'n} + n.b6k (11}

This Fourier series approximation can then be improved by corrections to allow for the truncation
of the integral to infinity to a finite wavenumber, the discretization of the integral and the avoidance
of pole(s) on the real axis, which together lead to inaccuracies and oscillations in the result. The
method used to achieve this is that put forward by Richards {8] .This involves the choice of two
variable parameters o and A , and the modification of the depth dependent integrand. The final
form for the Hankel transform is:

-

skt _.'f/AN-l Lgmn lrma -ir,uN-l
€ 3 Cleaare e +e 3. Cey

s> e

d)e:igﬂ‘-mlue—:rmu (12)

n=0 n=0
where: :
' C[kn.d) = G(k_,,;).(n - ia)'ll’ + G(k"_hd)N-'U:S' (13)
with: iNT '
Cltnity = Tty + o2 1 - el B2/ (1)

and §° is an approximation to the sun of the series 5 where:

§ =30 +[(n - i)/ N2 (15)

i=1

QUTPUT
£

The cutput from so called fip programs is range dependent. From this model the output could be
in terms of pressure, or any other parameter in any of the solid or fluid layers, here only the excess
attenuation in pressure predictions are presented.

Using the depth dependent solution normal surface impedance at some angle of incidence can be
predicted.
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WET SolL

Crammond and Don [4] have conducted measurements of soil normal surface impedance using an
impulse technique. They found that when they examined the normal surface impedance of 2 s0il
which had been artificially wetted, both sharp and rounded peaks in impedance at certain frequencies
resulted(see figure 2). Furthermore they found that even a change in source or recejver position of a
few centimetres resulted in a large change the frequencies and amplitudes of the peaks in impedance.
On examination of the soil it was found that a thin wetted layer one to two centimetres deep existed
at the surface. Using scil parameters derived from analysis of the surface impedance of the dry
soil given by Crammond and Don [4] and assuming an increase in flow resistivity and a decrease
in porosity in the wetted layer, it was attempted to produce » predicted normal surface impedance
similar to those measured. Thia was done by the use of the depth dependent code (see figure 3). It
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was found that in the parameter range studied the impedance was extremely sensitive to changes in
some of these parameters; corresponding to the large changes in measured impedance with position.
The parameters used to produce the results are not gntirely realistic; in particular the tortuosity {
given by ™™ ) in the wetted layer was unusually high, and the seismic wave speed contrast is not
that which would be expected. However, the results do show that with a combination of acoustic
(slow wave ) and seismic (fast wave ) resonances, both the smooth and the sharp peaks in Crammond
and Don's data can be predicted. : .
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SNow

Seismic wave speeds as a function of density are given by Sommerfeld [8] from a variaty of sources
and these have been extrapolated to low densities for this paper. The lack of literature makes
the choice of attenuation factor in this study a little arbitrary. The four pore structure dependent
parameters in the modified Biot Stoll model(fow resistivity o ,porosity 2,grain shape factor n’ and
pore shape factor ratio s, )} have been derived for snow from Attenborough and Buser’s work([9]. For
a semi-infinite snow layer the effect of elasticity is small, but for a thin snow layer on a rigid ground
surface, there are some frequencies and geometries where a difference of up to six decibels in excess
* attenuation is predicted due to snow elasticity (see figure 4).

Figure 4 Predicted excess cttenuation over 8cm snow loyer
Source and receiver at S5cm, range 7.5m.
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DiscussioN

It has been shown here that acoustic-seismic coupling effects can be important in the normal surface
impedance of wetted ground surfaces, although the exact nature of the seismic discontinuity in this
situation is unclear,

When the effect of frame elasticity in snow is examined the effect on a half-space ia negligible. Near
to the ground surface, on the other hand, over thin soow layers, there seem to be some frequencies
and ranges where a significant change in predicted excess attenuation may be found, due %o frame
elasticity effects, although the size of this difference is very sensitive to the seismic attenuation in
the snow and the actual magnitude of this attenuation is not well known.
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