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1 . INTRODUCTION

The paper submits to use binary phase—shift keyed (BPSK) signals in the multiple—access ranging

system like an underwater positioning system with many transponders. Code sequences of the si-

gnals for the purpose should have adequate autocorrelation properties to measure the range, as

well as adequate crosscorrelation properties to identify transponders. In the system the time of ar—

rival of the signal is a parameter to be established, therefore application of synchronous transmis-

sion methods is impossible. The signal can be received only as a whole by means of a matched fi-

lter. This is why the main problem for designing the asynchronous systemconsists in determining

the optimal structure of the set of signals for the given set of messages (addresses, orders etc).

The method of approach to the problem is based on calculation of a correlation distance for va-

rious sets of pseudorandom and related sequences according to the assumed definition. The cor-

relation distance and the power of the required code should be as great as possible. Codes built

around maximal—length (Huffman), Walsh, derivative (Digilock) and composed (Gold. Kasami) se-

quences were examined this way.

The best results are obtained for the code, the words of which are combined of cyclic shifts of the

M—sequence. The first bit of each word in the code is a reference chip sequence of the same cyc-

lic shift for every word, and the next bits have cyclic shifts different for each word. The presented

solution provides simpler technical implementation and higher bandwidth efficiency than a freque-

ncy coding.

2. CODING AT ASYNCHRONOUS TRANSMISSION

An asynchronous transmission system can be shown in general case like in Fig.1. The system is

composed of some number of transmitters and receivers connected with a common channel. The

transmitters produce discrete signals 5,-(1) which belong to a finite set — the assembly of signals

S=f Sift) E i = 1,2,...,N

The signals are transmitted independently one of another. We assume that in our application the

condition is met

I,- << To

where t,- — duration of signal s,-(t)

To — mean time interval between signal transmissions in the system
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Such a condition means that the throughput capacity of the channel is much greater than the per

formance of particular signal sources. It enables to employ asynchronous multiplexing. All trans-

mitted signals go to the input of any receiver, while their mutual position in time is free. Some re-

ceiver k’ is designed to detect a certain signal ska). This signal will be the desirable one for this

receiver, and all other signals will be the crosstalk interferences. Therefore. it is necessary to cho-

ose the signals so that they will be easy to distinguish each other as well as resistant against noi-

se a(l). This way a problem arises to design an assembly of N adequate signals. Since a code

word corresponds to each signal in the considered case. so the design is resolved to obtain the

assembly of code words. i.e. the code.

TRANSMITTERS RECEIVERS

51(3)   
Fig.1. Asynchronous transmission system

3. METHOD OF RECEPTION

Optimal reception of a BPSK signal can be achieved by means of a matched filter in theshape of

a transversal filter composed of delay lines and phase shifters. However, implementation of such a

filter for hydroacoustic purposes is impossible in practice. Thus, suboptimal reception by means of

a digital filter matched to the code word of the signal is accomplished in the proposed system.

The digital matched filter is composed of an identification circuit for the signal chips (first decision

circuit ) and an identification circuit for the code word ( second decision circuit ). Digital signal

processing comprises coherent filtration on a synchronous detector followed by noncoherent regi-

stration in shift registers. The registered signal is compared with the replica of the desired signal in

a decoder.

It is necessary to take into accoum that at coherent detection of BPSK signals the phenomenon of

inversed operation appears. This precludes to establish that the given code word or its comple-

ment is received. The non—continuous BPSK signal has three states: in—phase signal state,

out—of—phase signal state and no—signal state. The digital receiver made of two—state logic devices

cannot distinguish between a no—signal state and an out—of—phase signal state. Lack of the signal

is associated with one of the signal states. This fact is called as a change of the symbol alphabet.
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4. EXAMINATION 0F CODES

Examination of correlation properties for codes was carried out according to the following defini-

tions.

A binary code (I) of power M and length N is an assembly of M binary words of the same length

N, which are called as code words c,~.

<1> = {c,-, i=0,...,M—1 )

A Hamming distance d(c,-,c,) is a number of digit positions in which the corresponding digits of

two code words are different. -

A minimal code distance dH is equal to the least of all Hamming distances for different pairs of

code words. i.e.

dH = "'in d( Olaf—‘1'), I' #i

A correlation is a number of agreements between digits of two sequences for the given relative di-

splacement of the both sequences. In order to determine the correlation of two sequences we

compute digit—by—digit the negation of modulo 2 sum for the sequences and add the results. It is

an unnormalized correlation. A normalized correlation we obtain by dividing the number of agree-

mems by the length of the sequence.

A correlation function is a set of correlation values for all displacements. When the correlation fun-

c’tion concerns two different sequences. then we say on crosscorrelation function. When it con-

cerns two the same sequences, then we say on autocorrelation function. For the given code the

maximal value of the autocorrelation function is equal to the code length N.

Let us designate the maximal sidelobe value of the autocorrelation function by Lfi and the maximal

lobe value of the crosscorrelation function by L”. Then the value

dk=N—max(Lii.L,,-)

is called as a correlation code distance. It serves as a measure of the distance between the code

words in the space of code words and displacements. By comparing the definitions we can see

that the minimal code distance dH describes the differences between the code words 'in point',

whereas the correlation code distance dk — 'on segment".

Correlation properties of codes are examined in the relevant literature [1,2] for periodic sequences

or for alphabet composed of three symbols. There the correlation is calculated as the number of

agreements minus the number of disagreements. Here, we are interested in aperiodic correlation

functions with regard to effects of inversed operation and changing the symbol alphabet caused

by application of the digital matched filter to receive the BPSK signal. Therefore the adequate co-

de was searched for by computer simulation of operation of the decoder. The decoder is represe-

nted by a code word to which it is matched

A,- = (ck, k=1,...,N}
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The signal led to the decoder is represemed by a code word surrounded from both sides with ze-

ro words of the same length '

Bi = {b}, I=1,...,3N}

In the initial moment all zeros are written into the decoder. For each program step corresponding

to the displacement of the signal in the shift register of the decoder the number of agreements

(i.e. correlation) between digits of the docoder and signal code word is calculated

N

Cii(P) = 2 ak®b2N+k-p
k=7

where p: 2N— displacement

For remaining displacements the correlation function has a constant value. The mechanism of cal-

culations is illustrated in Fig.2 that shows the initial stage (a), the intermediate one (b) and the final

one (c) of passing the signal through the decoder. The set of signal code words is two times grea-

ter than the set of decoder code words, because it includes also the inversed words.

(a)
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Fig.2. Passing of signal through decoder
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If the set of the decoder words is composed of 15 words and each word has the length of 15 di-

gits. than a two dimensional array of 15x15 is needed to write the set. An array of 45x30 is needed

to write the signal words and a three—dimensional array of 30x30x15 to write the correlation valu-

es.

5. EXAMINED CODES

Using the method of examination described in the previous chapter we were looking for a code,

the normalized correlation distance and the power of which at the given length would be as great

as possible For practical reasons a criterion of compactness for the code was introduced. it is

known. that in the best case it is possible to find M=N orthogonal words composed of N digits.

We took the preassumption that the pseudorandom and related sequences preserve at least par-

tially their excellent correlation properties under the imposed conditions, too.

Such a verification was carried out for the following codes.

5.1. Maximal—length sequences

Binary maximal—length sequences (M—sequences) were examined at first because of their famous

correlation properties. It was examined a code, the words of which are all cyclic shifts of the

M—sequence. The correlation distance for the code equals zero.

A code composed of a M—sequence family reveals quasiorthogonality. E.g. the normalized correla-

tion distance of 8/31 =26% is achieved for the family of 6 sequences being 31 digits long.

5.2. Walsh sequences

A code of Walsh sequences is a classic orthogonal code. Alter changing the symbol alphabet by

substituting '1' for "—1' and '0' for '+1" we obtain the code that is also known as Reed—Miller code.

The code reveals zero correlation distance.

5.3. Derivative sequences

To create derivative sequences the Walsh sequences are used as the originative ones. As the ge-

nerative sequence it is possible to choose any sequence that meets the following requirements:

— it should have better autocorrelation properties than the generative sequence,

— a length of the originative and generative sequences should be the same.

Such requirements are met by as}. nonlinear shift—register sequences. For the so produced Digi-

Iock codes [3] the correlation distance is 0. The Stiftler code [3] is produced similarly. Cyclic shifts

of a M—sequence completed with one digit so that their length will be the same as the length of

Walsh sequences are used as generative sequences. It has also zero correlation distance.

5.4. Composed sequences

A Gold sequence is constructed by adding modulo 2 two M—sequences. A code of Gold sequen-

ces includes the both originative sequences and results of adding modulo 2 one of the sequences
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to each oi the cyclic shifts of the second sequence. The code is composed of N+2 words of the

length N. The correlation distance for the code of Gold sequences is O. as well as for the code of

Kasami sequences. which are generated similarly, but in more complicated way.

6. OBTAINED RESULTS

The described examinations give evidence that a compact quasiorthogonal code was searched

persistently. Such compact codes oi about the same power and length are created by derivative

and composed sequences. Unlortunately, the sequences are wrong balanced, i.e. the numbers of

zeros and ones within the sequences differ significantly. They do not proVide a good correlation

properties. The best correlation distance is achieved tor families of M—sequences. However, in this

ease the length of words exceeds many times the number of words.

1‘ cyclic shift

   

 

  

 

   

 

  
  

     

1' cyclic shift

reference
sequence

1' cyclic shift

7‘ cyclic shift

7' cyclic shift

Fig.3. Design of code words by combining cyclic‘shiits (example for 7—chips sequence)

A new proposition for designing the quasiorthogonal code is prepared. It consists in combining

the code words of two or more M—sequences. which are called in further as bits according to the
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terminology used in spread—spectrum communications. The first bit of each word in the code is a

reference chip sequence of the same cyclic shift for every word, and the next bits have cyclic

shifts different for each word.

An algorithm how to create the words is illustrated by the diagram shown in Fig.3. An example ct

such a code is given in Tab.1. The words are 2—bits long, each bit being a cyclic shift of 7—chips

long M—sequence.

Tab.1. Quasiorthogonal code of power 7

Signal No. Code word

1110010 1110010

1110010 1100101

1110010 1001011

1110010 0010111

1110010 0101110

1110010 1011100

1110010 0111001

The two greatest lobes of correlation functions for the code given in Tab.1 are shown in Tab.2 (a),

and for the complements of code words in Tab.2 (b). As we can see, the maximal lobes in Tab.2

(b) do not exceed the maximal lobes of crosscorrelation lunctins and maximal sidelobes of auto-

correlation functins in Tab.2 (a). $0, in this meaning we can say that the code is resistant to inver-

sed operation. The correlation distance for the code amounts 3, so it is a single—error correcting

code. The correlation distance is 3/14=21%.

The code of 3—bit words (see Fig.3) possesses also correlation distance equal to 3. The normali-

zed correlation distance is 3/21 =14%, but the code has power of 7x7=49 that is greater than the

length of 3x7=21. The correlation distance for the compact code designed this way can be impro-

ved up to 4 by throwing away 15 words of poorer correlation properties. Obviously, the power of

the code is then lowered.

We can generalize the results obtained tor the combined codes so that at increasing the length of

the chip sequence the correlation distance tends towards the limit of half the length and is inde-

pendent on the number of bits in code words.
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Tab.2. Maximal lobes of correlation functions for code composed of two

M—sequences

(a)
Signal No.

 

5 6 7

m 10,10
mm
m

10.9 10,10 11,10 m

10.10 11.10

m

 

Decoder No.

(b)

 

Decoder No.
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