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This paper shows the complex dynamic behaviors of an automotive wiper system.  The rich 

dynamic behaviors are numerically studied by means of time responses, Poincare maps and 

frequency spectra.  Next, the largest Lyapunov exponent is estimated to verify chaotic motions.  

Therefore, understanding the dynamics behaviours of a wiper system provides theoretical and 

practical ideals for engineers in designing and controlling the automotive wiper system in the 

future. 
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1. Introduction 

Many vibrations that may be harmful to the driver can be observed when a wiper, driven by on 

an automotive windshield wiper system, is operational.  These vibrations reduce the comfort of 

driving.  To find an effective way to control vibrations, we attempt to study the dynamic behaviors 

of the wiper system.  Several studies have been carried out to investigate the chatter vibrations in an 

automotive wiper system [1-3].  The analysis of chatter vibrations performed by Suzuki and Yasuda 

[3], leads to an important conclusion: the chattering behavior is a self-excited vibration based on a 

stick-slip phenomenon and exits only in a certain range of wiping speed.  Beyond this range, the 

chatter vibrations no longer occur.  This property is a feature of the stick-slip phenomenon that can 

be observed in other physical systems [4-6]. 

Various numerical analyses including a bifurcation diagram, phase portraits, a Poincare map, 

frequency spectra and Lyapunov exponents are presented to observe periodic and chaotic motions.  

For a broad range of parameters, the Lyapunov exponent provides the most powerful method for 

measuring the sensitivity of the dynamical system to change in initial conditions.  It can help us 

examine whether the system is in chaotic motion or not.  The algorithms for computing Lyapunov 

exponents of smooth dynamical systems are well developed [7-10].  Nevertheless, some non-

smooth dynamical systems have discontinuities where this algorithm cannot be directly applied, 

such as those associated with dry friction, backlash, or impact.  Many works have presented 

methods for calculating the Lyapunov exponents of non-smooth dynamical systems [11-13].  The 

method proposed by Stefanski [13] for estimating the largest Lyapunov exponent for a wiper system 

is employed in this study.. 

2. Model description 

A front wiper system has two blades.  They are attached to the windshield at the driver’s side and 

the passenger’s side.  Each blade is supported by an arm, which moves to and fro around the pivot.  

This motion is given by the rotation of a DC motor via the two connected four-bar linkages.  The 
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schematic diagram of an automotive wiper system is shown in Fig. 1.  In this figure, the symbols 

with subscripts D and P are referred to as driver’s and passenger’s side, respectively.  The lines 

denoted Li represent no deflection positions.  The terms 
i  (i=D, P) are the angular deflections with 

respect to the position Li while the notations 
i  are the angular velocity of the arms.  The symbols li 

represent the length of the wiper arm between the pivot center and the top.  The terms 
iz  represent 

the absolute velocities of the blades.  Then, 

)  ,(       )( PDilz iiii    .                                                                                                      (1) 

According to Newton’s second law, the governing equations for a wiper on the i’s (i = D, P) side 

can be expressed as follows [3] 

when 0iz , slip, 

)( iiiiii zMDRI   , 

when 0   ,0 iiii lNRz  , stick to slip transition, 

iiii DRI  , 

when 0   ,0 iiii lNRz  , stick, 

                                                                                                                   (2) 

 

where the symbols Ii are the moments of inertia and Mi are the moments induced by the friction 

force between the wiper blades and the windshield.  Ri and Di are the moments produced by the 

restoring force and the damping force, respectively, as follows 

PDPDDD kkR   , DPDPPP kkR   ,                                                                                       (3) 

PDPDDD ccD    , 
DPDPPP ccD    ,                                                                                      (4) 

where, 

)/()( MPDMPDD KKKKKKk  , )/( MPDPDPDDP KKKKKkk  , 

)/()( MPDMDPP KKKKKKk  , DPD Cc  , PDPP CCc  , 

DPPDDP Ccc  . 

The moments Mi can be written as 

)()( iiiii zlNzM   ,                                                                                                                       (5) 

where Ni is the normal force.  According to the experimental data [4], wiper friction can be 

approximated reasonably well by the combination of coulomb friction and viscous friction.  

Accordingly, the coefficient of wiper friction, , is given as 
3

210 )sgn()( iiii zzzz       )  ,( PDi  .                                                                             (6) 

Let Dx 1 , 
Dx 2

, Px 3  and 
Px 4

 be the state variables, the state equations of the wiper 

system (Eq. (2)) on the driver’s side can be written as follows 

when 0Dz , slip, 

21 xx  , 

DDDDD IzMDRx /))((2
  , 

when 0   ,0 DDDD lNRz  , stick to slip transition, 

21 xx  , 

DDD IDRx /)(2  ,  

when 0   ,0 DDDD lNRz  , slip, 

Dx 2 , 

21 xx  , 

02 x .                                                                                                                                          (7a) 

)(    0 iiiiI   
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The state equations of the wiper system (Eq. (2)) on the passenger’s side can be written as 

follows 

when 0Pz , stick, 

43 xx  , 

PPPPP IzMDRx /))((4
  , 

when 0   ,0 PPPP lNRz  , stick to slip transition, 

43 xx  , 

PPP IDRx /)(4  ,  

when 0   ,0 PPPP lNRz  , slip, 

Px 4 , 

43 xx  , 

04 x .                                                                                                                                          (7b) 

 

 
Figure 1: The analyzed automotive windshield wiper system. 

3. Numerical simulation results  

To clearly understand the characteristics of this system, we carry out a series of numerical 

simulations from Eqs. (7).  The resulting bifurcation diagram is shown in Fig. 2.  It is a widely used 

technique to describe a transition from periodic motion to chaotic motion for a dynamical system.  

It can be clearly seen from this figure that the chaotic motions appear approximately at regions II 

and IV.  The dynamic behavior may be observed more completely over a range of parameter values 

by the bifurcation diagram.  The details of the various responses exhibited by the system are 

presented in Fig.  Here, each type of response is characterized by a phase portrait, Poincare map 

(Poincare velocity vs. phase angle) and frequency spectrum.   

Fig. 3 shows the period-one solution.  In other words, while wiping speed is high enough, 

equilibrium point of Eqs. (7) is stable.  This means that no chatter vibrations will occur.  This stable 

situation continues until the wiper speed decreases into the region I in Fig. 2, the stable period-n 

orbits, such as period-7 orbit (see Fig. 4) or a quasi-periodic motion (presented in Fig. 5), namely 

“torus motion” that produces by two incommensurate frequencies, appear to this system.  As the 

wiper speed continues to decrease into the regions II and IV in Fig. 2, the chaotic vibrations take 

place.  This means that the chatter vibration occurs.  The particular features of two descriptors 

characterize the essence of the chaotic behavior: the Poincare map and the frequency spectrum.  The 

Poincare map shows an infinite set of points referred to as a strange attractor.  Simultaneously, the 

frequency spectrum of chaotic motion contains a board band.  The two features that strange attractor 

and continuous type Fourier spectrum are strong indictors of chaos.  Their phase portraits, Poincare 
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maps, and frequency spectra are shown in Figs. 6.  The period-three bifurcation occurs in region III 

in Fig. 2, which eventually results in a chaotic motion.  To see this behavior in detail, phase portrait, 

Poincare map, and frequency spectrum are shown in Fig. 7. 

 

 
Figure 2: Bifurcation diagram of the angular velocity of the arm of driver’s side D  versus angular 

deflection 1x . 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Period-one orbit for 5.1D  (rad/sec): 

(a)phase portrait; (b)Poincare map; (c)frequency spectrum. 
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Figure 4: Period-seven orbit for 068.1D  (rad/sec): 

(a)phase portrait; (b)Poincare map; (c)frequency spectrum. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Quasi-periodic motion for 054.1D  (rad/sec): 

(a)phase portrait; (b)Poincare map; (c)frequency spectrum. 
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Figure 6: Chaotic motion for 5.0D  (rad/sec): 

(a)phase portrait; (b)Poincare map; (c)frequency spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Period-three orbit for 398.0D  (rad/sec): 

(a)phase portrait; (b)Poincare map; (c)frequency spectrum. 

4. Chaotic Behavior 

In this section, we wish to demonstrate that the automotive wiper system has chaotic behavior, 

by computing the maximal Lyapunov exponent.  It should be noted that indicator such as the largest 

Lyapunov exponent is one of the most useful diagnostics for chaotic system.  For every dynamic 

system, there is a spectrum of Lyapunov exponents () that tells how length, area and volumes 

change in phase space.  The existence of chaos can be established merely by calculating the largest 

Lyapunov exponent, to determine whether nearby trajectories diverge ( > 0) or converge ( < 0) 

on an average.  Any bounded motion in a system containing at least one positive Lyapunov 

exponent is defined as chaotic, while non-positive Lyapunov exponents indicate periodic motion. 

In this work the chaotic behavior of an automotive wiper system is demonstrated by computing 

the largest Lyapunov exponent.  Any system with at least one positive Lyapunov exponent is 

defined as chaotic.  Lyapunov exponents measure the rate of divergence (or convergence) of two 
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initial nearby orbits.  Algorithms for computing the Lyapunov spectrum of “smooth” dynamical 

systems are well established [8-10].  However, “non-smooth” dynamical systems with 

discontinuities such as the dry friction, backlash, or stick-slip prevent the direct application of this 

algorithm.  Recently, Stefanski [13] suggested a simple and effective method to estimate the largest 

Lyapunov exponent, which utilizes the properties of synchronization.  This method can be 

explained briefly: the dynamical system is decomposed into the following two subsystems: 

drive system 

)(xfx  ,                                                                                                                                        (8) 

response system 

  )(yfy  .                                                                                                                                     (9) 

Consider a dynamical system, which is composed of two identical n-dimensional subsystems, 

where only the response system (8) is combined with a coupling coefficient d, while the equation of 

drive remain the same.  The first order differential equations describing such a system can be 

written as 

)(xfx  , 

)()( yxdyfy  .                                                                                                                     (10) 

Now the condition of synchronization (Eq. (10)) is given by the inequality 

maxd .                                                                                                                                       (11) 

In the synchronization, 
sd , the smallest value of the coupling coefficient d, is assumed to be 

equal to the maximum Lyapunov exponent 

maxsd .                                                                                                                                     (12) 

Fig. 8 presents the results of the numerical calculations which show the largest Lyapunov 

exponents that have been obtained using the described synchronization method.  The system 

exhibits the chaotic motion because of all the largest Lyapunov exponents are positive for 

rad/s  425.0D and rad/s 585.0rad/s 445.0  D . 

 
Figure 8: The evolutions of the largest Lyapunov exponent. 

5. Conclusions 

Our main purpose in this paper is to study chaotic attitude behavior and the problem of chaos 

control on an automotive wiper system.  Numerical methods including time responses, Poincare 

maps, frequency spectra and the largest Lyapunov exponent are employed to obtain the 

characteristics of the nonlinear wiper system.  Many nonlinear and chaotic phenomena have been 

displayed in bifurcation diagrams.  From this diagram, we can find that the chaotic motion appears a 

lot in lower wiping speed for wiper system.  In order to examine whether the system is in chaotic 

motion or not, the Lyapunov exponent will be the most useful method to diagnostics for chaotic 
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system.  The method of estimation of the largest Lyapunov exponent for wiper system uses the 

properties of synchronization phenomenon. 
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