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1. INTRODUCTION

A method consecutive iterations is wused by definition of
boundary conditions on bodies in the scattering problem. If on
the surface of the shell the oscillating velocity is given, it is
necessary to know the preassure too for solving the integral
Helmgoltz's equation. The method is effective when the shell may
be split on pieces which are parts of canonical bodies. The angle
dependence of the scattering amplitude for garmonical wave is
obtained. The method has features like Schwarzshild's method.
The angle dependence of the input of the butt-ends of the shell
is calculated. Minimums of backscattering indjcatris and small
incident wave angles are analysed. The method permits to obtaine
information of geometrical and elastic parameters of the scat-
terer.

2. ITERATIONAL METHOD

Let wus consider a plane sound wave incidence on shell, which
consists of elastic cylindrical part and two absolutely solid
hemospherical! ends:

B, = Aﬂexp[a(wzzw,'s +#1,X)]

( A, - amplitude of the incidence wave; k,:{l(,;k,;ki] ;k=0/¢.‘°-
wave number in surrounding media: 2 -frequence in rad.;
C o - sound speed in media; Ka 2K,Co5 (Pie} : Kz =0 ;
Ky == Ko S (Ble): Gine - the sliding angle of incident wave).
Besides rectangular coordinate sistem we introduce a cylindrical
and spherical sistem too.

Let us split the diffraction problem on two stages. The
first- diffraction of absolutely solid body. The second - dii-
fraction with taking into account the elasticity of the shell. We
shall use the iterational method for the diffraction problem on
the absolutely solid body. The sence of the method is following:
let us consider three bodies: the sphere Sy = 8,1 4 g, | the
sphere £ = §,0 4+ §* and the infinite cylinder @ & Co CaaCy -
On the surface of the cylinder the normal velosity wv3(w)
is given. When thé other bodies are absent: Ve, (R)¢o ,'u;‘(i}gn‘
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Ve, (B) = . On the surfaces Sa Sa normal
velocities '\l}g (6)% Q0 and 'V"'gt.(o,_)*o 'V"‘Z (0;): Via (82) = 0O
are given too. Let us difine these \eloc1t1 s in such way, that
produced by Sz and C  the full field satisfies to
the condition of absolut hardness of the surfaces 8., §& .

° + If these velocities are found the diffraction problem on
absolutely hard' shell will be solved,

The zero-approuch we will take in form: 'VE'. B =Vine leo
V'.rl == VThe | g i Vs 2wt =~Viee lg L, where Viue - is the
lnc:dent wave \e’oc1ty

‘ The next step is the calculation of the velocity 'V‘.‘ g,
produced by the cylinder Ce _on the surface £, Adding
to Vg R the quantity. 1&5 we obtain a new dlstrtbutnon
of \eloc:ty on Sﬂt which produces a correction to the velocity

on the surface of the cylinder in its turn. Changing the

sign of this correction we radiate by this velocity on "‘
again and so on. This procedure is useful in the case when the
sphere 2 is absent and we have a hemiinfinite cylinder. When

the shell is limited, the iterational procedure is analogical to
the described above w:th taking into account the mutual influence
of the spheres X'g¢ and A’ . For this method it is essential
that the bodies % Sy and & have canonical surfacés,
which leads to devide the variables when solving the Helmgoltz
equation. This iterational procedure is like the Schwarzshild's
method for two bodies.
Let us define the direct and inverse Fourier -transform as
following: lu
L

YO je Sa)dx 3 3x)= Je "B (k) dk .

Let the pressure P—ea,‘ (?.'Z "?) produced by cylinder have
the form ( ¢ = ( K& 2)1/2 ) o

B, (0.2 2 cos (0 Ig—:f e H o oep) A, () iy

{1

Because both the incident field and shell have a plane of
ssm&netr we ha\e in this expantion only terms with @o¢§ W-"'P) .

a - Hankel-function of number ® ., A (&)
the corresponding Fourier-amplitude. For the term of number me
of the normal part of the velosity on the surface of cylinder we
obtain :

vl | = Gopyt Je T H O ey 2 A () ke
C

'y -
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!
H&‘ (®RY- the derivative of Hankel-function with respect to its

argument, o - the medium density. The cylinder impedance
define as [ 1 ] :

7 " () = p.hJ(lea) (wp Ry HY' (2R)
d Ve (k) (=RY K/ (=R)

It is easy to obtain an expression for ﬂ.... (L’a) in (1) :

(lwsRY V.S (k)
A. (%) - (xR) HI/ (%R)

Let us find the \EIOfity Tc. £ (84) produced by c¢ylinder
on the surface . Usmg (1) and (3) we obtain:

: s
Vo s (0= 518, (Te g T () k) +

b IR (il (1
+ Cof 9‘(‘5& : "';{F{lv?e?) V.. f’(@) Jlt’i)
where B = RCD&OL s g RS‘-“Q_( : T s 94 5?-/2. .

we

(2)

(3

Co

The \eloclty Vel _,_a (&) produced by cylinder Ce on the

surface §,% has the 'form:

ez H & sy
Vo ®sg fe **—%ﬁ Vi (k) dka ) +

ot be® (the) HE (%) -
x cog B, (-L ae;I,ff”(ﬁR) rad (l’a)Jke) ’

where 2% P“"ez +L $- R sin 92 0< B, £5/2

The velocities (4) and (5) have ;nau:uliaritiers—'--(?«(’a'E g'\‘el'")
by B4 —» I and ®g3 -» © | These peculiarities are being
square integrated and do not influate on the essence of the

method.
The field of the spere -S.t let us introduce in form:

('e 6,9 = Z K('(??)ZP (o5 8, J!M‘ cog (w¥),

mz20 i
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where gl. \(hz) (“'/fzk‘“‘h'ﬂu Woﬂ— spherical Hankel-function ;

Va sk (eoseg‘) - Lejandre-polynom. @)
Using the ortogonality of Lejandre polinoms for .Plh.h we
obtain:

@ (Rwet)[(n-w) 1]
" 2 [(nrw ! ]

( SV(BAP (co 591) s 6, Jo)ﬁtjg—%:—,&—ﬁ (T}
N -

Wi
The velocity TS“ Co (‘E) produced by the sphere 5‘ 4 on the
surface Ce has the form:

Gomeea(F 500 (oapll) -

_ Siw o.l. Co§ Oy a(ﬂ ("0?1) Phn(c"f" 9;‘ “
(KoR) (“Zo 287 (L)) m.) .

where Ph-.(c”' 91\ - the derivative of the Lejandre pollnom with

respect to argument; Ty R /S By 3 G = :rzc'fg R /%Y
For the second sphere we obtain:

'v;.i @- s.“e(z _gm%p (s8) po ) -

- o 9! CO.;@: ( pa) R(“(Prz) Phh(COSg) (2) ) ,
(¥oR) w=e e.{-“ I(koR) P"“"
where Ty s R/ siby ; G =T/2+axcG (27/R) ; ®/2L- %

Analogical formulae may be obtained for the mutual influence
of the spheres, For the initial distribution of the normal
velocity on the surfaces of c¢ylinder and spheres we take the
1nc1dent velocity with in\erse sign:

115 ma Vo) ::-(wf.) Yot a, L (4R &

hory
g inR cof 9‘3

STOES AN IPEY N N 1 (M ew
x (JL (g RsmB) (i CosQ,) + JL (4R5.8.). (ky £08))
V : (91) Vo (6)) ls,‘ -"(“’S‘) A, (l) & egr{ L {aReesH,) ¢l k‘L.‘ n
n (T (g Rein8, ) (i kycosy) 4 J. (KR w0 (i siu80)) |
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where £ ¢ 8 2 ’ €,=8.=€,=...= i.
Using the formulae (1) , (3) and (6) , (7} , for the far

field ve obtain: J’a?H(“(aef)"ﬁaJ“") J
PR (mf’“ =HI Ry O

(2 ) (€ e canstl)] >

hed

where §=7 $im By E 2T co9by ; "!.'a..(? AN EE?‘CO.194) /"
The scattering amplitude is:

£= ( 2 N CARAY) / (A, (s (Exp [th2d /7)) .
[ 1]
Let us define Ra = 2Q €°3(Q l'fl) The integration in (&) was
produced by means of Stacionary phase method for large k:'Ti .
In the case m =0© this integral may be easy calculated. Thus,
the contribution in the scattering amplitude from cylindrical
part of the body is equal:

£ L2 5 Ny (kewo)
3okosin® ST HY R s8,)

It is necessary to take into account the eigenfunctions of
the shell. when considering the diffraction on the elastic shell.
These eigenfunctions depend on the boundary conditions. Let us
suppose for the simplicity the condltions of hinges. On ihe ends
of the shell the hinges  are leaned on two absolutely solid hemi-
spheres. In this case when 2 = 0, L «we have such end
conditions:

2
¥ 2
wwao ; 2238,
which means that the normal displacements and the bending moments

are -equal to zero. We wuse the equations of ~ovovent of thin
cylindrical shell in form:

Ly n-, T (R oy (v,

exp {-ing ).
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where T“‘-S -matrix of selfcnnjugated differential operators:
&3 - Kronecer's symbol; Y1 =(4-v)/ER; E v - Joung's
modulus and Poisson's coefficient of the materlal of the shell
correspondingly.

The solution of the system (9) we construct in the following
form:

W, (279) = Z Z W, dog(kr'i)cog (w¥Y
w ('E 1“" Z z 'W' $in (l(‘,E)s“_‘ (u.."f)
Wy (%90 z, $ e (g )ess ()

P:o Wazd
Because EU\Q is e\ent function of ¥, P'mJ is event too:

Plhe. 2 \PR) 2 Z une. 9:“(fo)cos(h"?) )

F 5o o Can
Pad (¥R)= Z R 4 S (MP?) cos (WY ,
P=0 ] )
where kp =Tp /L .

It is easy to obtain an expression for mechanical impedance
ZH by etastic vibrations of shell [ 1 ] :

hp__ .I.Cefgsnﬂ lehPI
2y = (m.:;\

PRIRAC(ERT R R EA 38 wg g

For the solutﬁon of the problem it Is necessary to deflne TM
through 'V".“_

We use equati::ns P"“ _"V"N:? P-qu T:MJ Z-..f
Phr=-’rahpzw ! PF =V£ Sng ! _

PT:J Pu-c +P‘~P+PSF = ( ""J +V , *K:P)‘g:r '

(19)

wp
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- wp

where £>: and —V— - amplitudes of pressure and velocity
which are additions because of the elasticity of the shell; P}
and 1F - amplitudes of pressure and velocity on the surface

of cylinder due to the influence of the hemispheres.
Finally we obtain:

AR Z'.:;"?"’ e % 2d) o
;""Zza/ (Z; + ,“

The full vibrating velocity in the scattering wave:

twne

WP P wh ™~
QV:;J'f ==V, ]f;F + ]F;

“, L]
where ?iuc and Z r2ad we take in form (2).

When calculating impedance “'“J' - we take into account
thatPFhe shell is limxted [ 2] . The impedance of limited shell
wd, ¢ is:

Z:,SU‘) = z% fz.h:(”F(yf-ka)F("r,(’k),l.) dk

where k R‘L -.(V +k)L
K -4 (e 1), (e )}
F( PsV,LB, 2: : ("P Ky (Rr-i-k) )

The proposed iteration procedure is effective in calculation.
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