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1. INTRODUCTION

A method consecutive {iterations is used by definition of
boundary conditions on bodies 1in the scattering problem. [f on
the surface of the shell the oscillating velocity is given, it is
necessary to know the preassure too for solving the integral
Helmgoltz's equation. The method is effective when the shell may
be split on pieces which are parts of canonical bodies. The angle
dependence of the scattering amplitude for garmonical wave is
obtained. The method has features like Schwarzshild‘s method.
The angle dependence of the input . of the butt-ends of the shell
is calculated. Minimums of backscattering indicatris and small
incident wave angles are analysed. The method permits to obtaine
information of geometrical and elastic parameters of the scat-
terer.

2, ITERATIONAL METHOD

Let us consider a plane sound wave incidence on shell, which
consists of elastic cylindrical part and two absolutely solid
hemospherical ends:

P;M_ = A, exp [ (lf@-z-'-l(y + K, x)]

( A, - amplitude of the incidence wave, ko= [kx l’ ok { K= /00 -
wave number in surrounding media; W -frequence in rad.:
Coe - sound speed in media; Kg = K. cos (e.m.) Ka= 0 H

Ky =~KosiwlBin) ; O~ the sliding angle of 1ncident wave) .
Besides rectangular coordinate sistem we introduce a cylindrical
and spherical sistem too.

Let us split the diffraction problem on two stages. The
first- diffraction of absolutely solid body. The second - dif-
fraction with taking into account the elasticity of the shell. We
shall use the iterational method: for the diffraction problem on
the absolutely solid body. The sence of the method is follouing-
let us conslder three bodleS° the sphere S¢ = 8,4 + S, the
sphere S, = §;' + S and the infinite cylinder @& = Co+ ,_-+C‘a
On the surface of the cylinder . the normal velosity Vg ()
is given. When the other bodies are absent: (@)#0 '\l';_. (@) =0,
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Ve, (z) =0 . On the surfaces ;91 and Sa. normal
veldcities ‘V“,e(e;\#o and Vub (6;) # 0 , V3.2 (81)= Vs (6, = 0
are given too.” Let us difine t?hese velocities in such way, that
produced by S4 , Sa and @ ‘the full field satisfies to
the condition of absolut hardness of the surfaces § L ,S'al

o, . If these velocities are found the difhaction problem on

absolutely hard shell will be solved.

» The zero-approuch we will take in form: ‘V-c. = = -wne ng ¢
Vet = = Vi lst 3 ﬂt =~ Viue ‘51 » where Vika — is the
incldent wave velocity.

The next step is the calculation of the velocity Tg,.s,
produced by the cylinder Co ,0n the surface ,S',. Adding
to Vg the quantity - Veo gl . we obtain a new distributlon
of velocity on ,.S" which proEIuces a correction to the velocity
ch" on the surface of the cyllnder in its turn. Changing the
sign of this correction we radiate ' by this velocity on 5'1‘
again and so on. This procedure is useful in the case when the
sphere Sa is absent and we have a hemiinfinite cylinder. When
the shell is limited, the iterational procedure is analogical to
the described above with taking into account the mutual influence
of the spheres Sy and S% . For this method it is essential
that the bodies S » S and Q& have canonical surfaces,
which leads to devide the variables when solving the Helmgoltz
equation. This {iterational procedure is like the Schwarzshild's
method for two bodies.

Let us define the direct and inverse Fourier-transform as
following'

P (k)= 5 j‘e'xi'(x)alx ; (x)—fe““ & (kydk

Let the pressure P'MJ (9 2, '7) produced by cylinder have
the form ( R = (l(,l... u._. )‘/1 ) ¥

P S’E‘g)-zc?(’“?)g Hm( SBA (l‘ )Jk (1)

Because both the incident field and shell have a plane of

mrﬁtry ue have in this expantion only terms with cos (m¥P),
'}i - Hankel-function of number wm . A, (Kg) -
the corresponding Fourier-amplitude. For the term of number wmwm
of the normal part of the velosity on the surface of cylinder we

obtain : -‘* ‘L .
Vo | = Gepd [ B o= A W 4k

1
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H(n ('!R)- the derivative of Hankel-function with respect to its
argument, Jo - the medium density. The cylinder impedance we

define as (1 ] : @
m Bo (kY (e R) Ha (2R)

Z (k)=——== "WV (R
rd Viad (k) (=R) H (=R)

It is easy to obtain an expression for Ah (Ha) in (1) :

. ({© 8 R) Vaur (ki) (3)
Am(k!)" ('AP-R\ H("’(RR) )

Let us find the velocity Vc-. 84 ’- (91) produced by cylinder Cg

(2)

on the surface _S‘* . Using (1) and (3) we obtain:
e e H, 4) /(e p)
ANTORENY 1 [j =0 Vo (k) dbe )+
vk i.' (tka) 20 (4)
+ Cos O, (Se. 2 ‘;Hﬁ”(( :: V..J(“a)Jl‘a),

where 3 = Reos 84 ;_9 Rsimey ; 7 = 91.‘:?/2. .
The velocity 1"“\ 2,4 (@) produced by cylinder €e on the
surface ,S‘a* has the form-

g ($)
S‘ (9,) h s“‘e (._,j. " J}.-[[(Il l;fk) -V:al (ki)‘“{‘)

"Caia® (k) HY ()
4 cos 9, (‘“ ¥ H:‘I(RR)(E.? 'gd( \cll‘g.)

where 25Rﬂ°sel +L : ’: RS:U\ Ga : 0= 92 ér/a .

The velocities (4) and (5) have peculiarities ~ f (2R siw By )
by ©41 —» i and ©; —» O . These peculiarities are being
square integrated and do not influate on the essence of the

method.
The field of the spere S, ‘let us introduce in form:

EF (z,ol ¥)= f f.i“(k.'z)Z P,‘ “(ces Oi)Pfl-Cos(»ﬂf)
nzo m=0 . ' !

(5)
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T )
where .ﬂ(“(“ '3) (‘]‘/(2'( 3)4H (k"')— spherlical Hankel- functlon H
P, n (cos @‘) ~ Lejandre-polynon.

Using the ortogonallty of Lejandre polinoms for ﬁmn we
obtain: '

(@) (2n+1) [(r-m)! ]/[’ cwPo
= Y (6 P (Cbso)ﬂm@‘lg (7)
2 lnemIT A b R (k) -
The velocity VS;"c, (2) produced by the sphere Sy on the
surface < has the form:.
Vi o(F1= Sin 6 ( Rk g R (cos8.). )
S \S TR - SN "
- Sin 9; Cog 6 ( Z ﬁm (k-'h) P Mo ("“91) ) )
’(k.RS o R@Q’(U.R) LI '
where P...,., (es®¢)}) - the derivative of the Lejandre polinom with

respect to argument; Z,a R/4in 8y ; 6, = acctg (R/2)
For the second sphere we obtain

] @ |
e (5 Krkn, (oo ) -

- s'fhzgz cos 8, (Z gu‘(ll’ %, ) P”“ (copea) {(2)Y ’
(kDR) ngo (t\,(k R) “\!\.(
where %, =R/ 8w 8, ; 6,=%/2 +q.“-t° ('/8y; %= L- %

Analogical formulae may be obtained for the mutual influence
of the spheres. For the initial distribution of the normal
velocity on the surfaces of c¢ylinder and spheres we take the
fncident velocity with inverse sign:

L] ™ I
% (oY @ =-Gepy Aty E L (KR Yy

L

Vs:(& " (94)\ o (“-‘Po) A, e;(k;!.cq@,) (.)mem .
(L. (Kaks‘ue,)(ck cos9,) + J, (KR 80,). (ky Sim00)) 5
Vel @)~ K Ot 2 (fon A, ()&, exp L1 (lBeos@r) kL)

x (J. (kR )ik °°$9)+J ‘(kyRsin8y) (Kysin6, ))
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where €°= 2 ’ E“:Fe-s_"...:i . .
Using the formulae (1) , (3) and (6) , (7) , for the far
field we obtain:

;M k (n
v _ H Y ) Vi (k2
P(ot,?t)‘:(*”f"‘[-j; = H(n ; (&R: ‘Jk t
wa e (ﬂ(k ?‘) (ﬂ(u°2 « 5
"(.,.o RE (i R)k ‘)P ) (z‘o RO waRIK, B ‘ge)P.....)]

i/
where =7 Siu 94 : 'Z =Ty cos Oy ; Ce= (Tl "'Lz" 2 L, cos et) .
The scattering amplitude is:

$ = ( P (0,7)) /(A 10gs (exp iz /2,)) |

Let us deflne Rg B 20 803 (2“‘?\) The integration in (8) was
produced by means of Stacionary phase method for large Koty .
In the case m=10 this integral may be easy calculated. Thus,
the contribution in the scattering amplitude from ¢ylindrical
part of the body is equal:

. L)

(~20) Vaug (l(ocosGI) .

o= -—-—:—"‘ 7 e [-LM
Ko 8in 84 =0 'H(l\ (k R siw 9‘)

It is necessary to take into account the eigenfunctions of
the shell, when considering the diffraction on the elastic shell.
These eigenfunctions depend on the boundary conditions. Let us
suppose for the simplicity the conditions of hinges. On the ends

of the shell the hinges are leaned on two absolutely solid hemi-
spheres. In this case when R =o I. we have such end

conditions: 2 ‘|J (
2 Wa(®) _
w.g (¥)=10 ) % =2 =0,

which means that the nofrmal displacements and the bending moments

are equal to zero. We use the equations of movement of thin
cylindrical shell in form:

L W‘(zw)- 5.1 (B, (!‘fk)-\-P”(‘Z'?R))

w4

A9
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where L; -matrix of selfconjugated differential operators;
Ty - Kronecer s symbol; ra(l- 2)/E4 ; E , ¥ - Joung's
modulus and Polsson's coefficient of the material of the shell

correspondingly.

The solution of the system {9) #e construct in the following

form:

Vi) = B % Wy ok (42) con ()

"IA'I'z (3,?)= Z 2 ‘ hPSr'n("’ 2)sin (m¥), (19)

Pao M:O .
.1':& (Z a?) = E'_OE W?. Sim (Kpi') Cog (m"f)

Because Pmc_ - 1§ event function of 'f P-,,J is event too:

P (g¥R)= >3 p th(l(ri‘)cas(“-"'f)

P:o lh- (11)

RM, ¥ R = Z z P s:u(wri) cos (m¥),
Pe® m=0
where Kp -"P/Ip

It is easy to obtain an expression 'for mechanical impedance

th by elastic vibrations of shell [ 1 ] :
z=b__ icg ko (AT
Y wR? |A 53"

AN = det L3 A =D 7L

For the solution of the problem it Is necessary to define “""P
through L

We use e:;uations = Z;P ' R. Z“J :
& 'i’,. B

ss,s

27 B P, B (T )g“*
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Yo,
where ED P and -V_ P— amplitudes of pressure and Veioc1tv
which are additions because of the elasticity of the shell;
and 'V;F“? - amplitudes of pressure and velocity on the su:?;ce

of cvlinder due to the influence of the hemispheres.
Finally we obtain:

~b T Z.u Z:j (PhP-TmPZh

-v- - - {12)
= ine "~ ™ p
J Z b ZM (g Py
The full vibrating velocity in the scattering wave:
wh b _ b
1F;Mﬂf ='f -V?;C - 1f;F, . + 1[; N
Y, [

where ;Zluc and igqu we take in form (2).

When calculating impedance ;?1.J we take into account
that the shell is limited [ 2 ] . The impedance of limited shell
Z‘rae/ < 1s: |

_ S
. "
Ly = 4 [ Y :

Zus“ 7§ &y () Flo kLY F (i (0, 1)dE,

~-0a
where f(? k)L —i(k +)L
f {(e7 2y (77T

F(“"‘*L)%T ¢ (kp-k) * { (kp 1K)

The proposed iteration procedure is effective in calculation.
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