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This study attempts to analyze free and forced nonlinear vibration of rectangular thin Magneto-Electro-
Elastic (MEE) plates. Considered MEE Plate is simply supported and the governing equations are derived 
based on the classical plate theory. Derived equations will be solved by two methods of perturbation, Itera-
tion Perturbation Method (IPM), Homotopy Perturbation Method (HPM), and at the end the results of valida-
tion will be gained by a comparison between the obtained results and Finite Element technique and analytical 
solutions. 0.1% difference between perturbation techniques and other methods prove the accuracy of the 
resultant perturbation equations. 
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1. Introduction 

There are few materials in nature which can couple several properties such as magnetic, electric, 
elastic, thermometric, etc., all together. In such materials, the appropriate responses are very week or 
they become applicable only if the temperature is very low. Even so, they are used only for very spe-
cial applications. The benefits of these materials, make them prominent and urge the researchers to 
find ways for merging these properties into a single substance.  

Composite materials have become a solution for this purpose. A composite material, by arranging 
different layers with different properties, can combine several characteristics in one place, conse-
quently leading to the emergence of multi- property materials.  Ferric material is introduced as a com-
posite material with at least two ferric characteristics (FerroElectric, FerroMagnetic and 
FerroElastic)[1-3]. Since they can be utilized in multifunctional equipment, they are quite attractive 



ICSV24, London, 23-27 July 2017 
 

 

2  ICSV24, London, 23-27  July 2017 

and have increasingly been subjected to recent studies. In these materials, the interaction between 
different parameters can produce a new phenomenon like Magneto-Electricity [4-8]. 

MEE material is a good means to reach the compound benefits of magnetic, mechanical and elec-
trical field for the previously mentioned composites. Piezoelectric and piezomagnetic smart material 
can be used in the form of woven or layer combinations [9]. With a glance at its important abilities, 
benefits and applications, a plethora of studies have been conducted in a fast ascending rate to explore 
them and to extract their governing equations.  

Through a continuous harmonic movement in a magnetic and/or electric field, one can employ all 
of composite abilities together. Therefore, in many applications, vibration is the main activity in 
equipment and crucial to analyzing. Although linearization can lead to simplicity, its actuality and 
thus accuracy may be reduced, so nonlinear analysis is critical and undeniable for a high precision 
system analysis. 

Garcia Lage and Mota Soares presented a layer wise partial mixed finite element analysis of MEE 
plates for static and free vibrational state [10-11]. Chen and his coworkers studied the free vibration of 
non-homogeneous transversely isotropic MEE plates [12]. Bhangale and Ganesan worked on the free 
vibration of simply supported non-homogeneous functionally graded MEE finite cylindrical shells and 
represented a finite element model for the evaluation of magnetic and piezoelectric effects on natural 
frequencies of material [13]. Ansari and Gholami analyzed size-dependent nonlinear forced vibration 
of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory 
[14]. Pakam and Arockiarajan investigated the   effective   properties   of   1-3-2   type MEE compo-
sites [15]. This paper tries to study nonlinear vibration of this smart composite material by perturba-
tion techniques. The precise prediction of nonlinear oscillations has been of significant importance in 
mechanical dynamics. Apart from a limited number of these problems, most of them do not have a 
precise analytical solution, so these nonlinear equations should be solved using approximate methods.  

HPM and IPM are two of these approximation techniques. These procedures are convenient com-
putational techniques which yield analytical solutions with a high accuracy. Unlike the traditional 
numerical methods, they do not need discretization and linearization. In addition, these techniques are 
quite straightforward to write computer code with and do not require a large computer memory. As 
one of their most remarkable features is that usually a few perturbation terms are adequate to obtain a 
reasonably accurate solution. 

In the next sections, the basic relations and dynamic equation of motion will be derived first. Then 
nonlinear vibrational analysis will be performed by using perturbation methods. Comparisons be-
tween the answers, and the analytical and the FEM solutions serve to prove the validity and accuracy 
of the model. 

    

2 .Modeling 

Suppose a thin plate of MEE composite as shown in Figure 1. For such a material, the basic Equa-
tions are presented as follows [16]: 

 

C eE qHσ ε= − −  (1) 

  

TD e E dHε η= + +  (2) 

 
TB q dE Hε µ= + +  (3) 
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Figure 1: Schematic
 

  Where, σ , D and B are the stress, electric displacement, and magnetic induction (i.e., magnetic 
flux) respectively; ε , E andH  are the strain, electric field, and magnetic field, respectively, 
µ are the elastic, dielectric, and magnetic permeability coefficients, respectively 
piezoelectric,piezomagnetic,and magneto electric
MEE material, are introduced in[16]. 

Also the relationship between the electrical field, the electrical potential, and the
tial is: 

, ,k k k kE H k x y zφ ψ= − = − =

Thus Eq. 1 to Eq. 3 becomes[17]:
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2.1 Equation of motion 

For thin rectangular plates, and based on classical plate theory, strain
tion is [18]: 

 

x x x

y y y

xy x y x y

z xz yz

u w

v w

ε

ε

ε

ε ε ε

= +

= +

= + +

= = =

The motion equation of the thin plate, based on the classical theory of von Karmen 
  

, , , , , , 0 2 , ,2 2 ( )x xx xy xy y yy x xx xy xy y yy xx yyM M M N w N w N w q I w I w w+ + + + + + = +

And the compliance relation is [20]

, , , , , ,x yy xy xy y xx xy xx yyε γ ε− + = −

in which N represents forces, M shows moments and I is the inertial momentum and is defined as:

 

Schematic representation of an MEE composite [15] 
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The motion equation of the thin plate, based on the classical theory of von Karmen 

, , , , , , 0 2 , ,2 2 ( )x xx xy xy y yy x xx xy xy y yy xx yyM M M N w N w N w q I w I w w+ + + + + + = +�� �� ��

[20]: 
2

, , , , , ,x yy xy xy y xx xy xx yyw w wε γ ε− + = −  

which N represents forces, M shows moments and I is the inertial momentum and is defined as:

are the stress, electric displacement, and magnetic induction (i.e., magnetic 
are the strain, electric field, and magnetic field, respectively, C ,η and 

e ,q and d are the 
related matrices for 

Also the relationship between the electrical field, the electrical potential, and the magnetic poten-

(4) 

(5) 

 

(6) 

nonlinear displacement rela-

(7) 

The motion equation of the thin plate, based on the classical theory of von Karmen [19] is: 

2 2 ( )x xx xy xy y yy x xx xy xy y yy xx yy�� �� ��  (8) 

(9) 

which N represents forces, M shows moments and I is the inertial momentum and is defined as: 
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After defining stress function (F), we have [21]: 
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Compliance Eq. 9 is simplified as 
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Simply supported rectangular plate boundary condition is defined as: 
 

,

,

0 ( 0, )

0 ( 0, )
xx
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= = =
= = =

 (13) 

and the boundary condition for closed-circuit is: 
 

( , ) ( , ) 02 2
h hz zφ ψ± = ± =  (14) 

If we get the transverse displacement as 
 

( , ) ( )Sin( )Sin( )w x y hf t x a y bπ π=  (15) 

 

 then by replacing Eq. 15 into 12, eq. 16 is derived: 
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To solve this PDE, we should get F as: 
 

0 0

Cos( )Cos( )
N N

pq
q p

F B p x a q y bπ π
= =

=∑∑  (17) 

By substituting Eq. 17 to Eq. 16 and Eq.15 with Eq. 12 and by applying Galerkin method for PDE, 
we arrive at a nonlinear ODE: 

  
2 2 3
0 Cosf f f f Q tω β α+ + + = Ω��  (18) 

 

in which 0ω  is the natural frequency, Q is the excitation amplitude, and α  and β  are nonlinear 

stiffness matrix coefficients represented as 
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3. Nonlinear equation solving  

 Primary resonance of the system is studied analytically by applying HPM and IPM 
 methods on Equation (18),  
 

 

3.1 HPM        

The main feature of HPM is as follow [22]: 
 

2 3
0 0( ) ( ) ( ) ( ) 0L v L f PL f P v vβ α− + + + =  (21) 

in which L(f) is 
2

2
02

( )
d f

L f f
dt

ω= +  (22) 

By assuming that the first approximation is  
 

0 0( ) Cosf t A tω λ=  (23) 

We can find the ratio of nonlinear frequency to natural frequency as: 
 

2

2 2
0 0

3
1

4

A Q

A

αλ
ω ω

−

= + −  (24) 

 

3.2 IPM  

In this method, a nonlinear equation is first arranged with the standard form [23]: 
 

( , , , ) 0f h f f f t+ =�� � ��  (25) 

Then we get ( ) ( )f t y t=�
 and rewrite the equation( ) ( , , , )y t h f y y t= −� �  

(26) 

 

Now, by getting the initial guess function as bellow 
 

( ) cos( )f t A tω=  (27) 

If we follow the method, the ratio of nonlinear frequency to the natural frequency will be repre-
sented as: 
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2

2 2 2
0 0 0

8 3 4 cos
1

3 4

A A Q t

A

β αλ
ω ω ω

Ω= + + −  (28) 

 

4. Results and discussion 

4.1 Free vibration 

In order to investigate mentioned solution methodologies, a 50x50 rectangular isotropic plate with 
the properties specified in Table 2 is considered. 

 

Table 2: Thin rectangular MEE plate Properties [24] 
 

10 2
11 21.3 10C Nm−= ×  

10 2
12 11.3 10C Nm−= ×  

10 2
66 5 10C Nm−= ×  

2
31 2.71e Cm−= −  

1
31 222 ( )q N Am −=  

9 1
33 6.37 10 ( )C Vmη − −= ×  

4 2 2
33 0.839 10 NS Cµ − −= ×  

12 1
33 2750 10 ( )d NS VC− −= ×  

3
0 5550Kgmρ −=   

    

 

In Table 3, the ratios of nonlinear frequency to the natural frequency obtained by IPM and HPM 
are presented and compared with multiple time scales method [25] and finite element method [26] 

  

   

Table 3: comparison between methods   
 

A=Wmax/h 

 0.4 0.6 0.8 1.0 

HPM 1.02027 1.04505 1.07880 1.12069 

IPM 1.02027 1.04505 1.07880 1.12069 

FEM [26] 1.02049 1.04559 1.07959 1.12239 

Analytical [25] 1.02032 1.04525 1.07936 1.12197 

    

    

 
As clearly shown in Figure 2, there is a very good agreement between HPM and IPM results in the 

free vibration analysis  with analytical and FE and only 0.15% difference has been viewed in compar-
ison with the FEM and 0.11% with the analytical responses. 

 

 

Figure 2: methods comparison. 
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4-2 Forced vibration 

For the mentioned rectangular MEE with the given dimensions and properties, the frequency  
Responses are derived by IPM and HPM techniques. Eq. 29 and Eq. 30 show the Resulting rela-

tions.  
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A Q
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And Eq. 31 shows the frequency response solved by the multiple scale technique [25] 
 

2 2
2 2

2
0

3
( )

8 4

A Q
A

ασ
ω

− =  (31) 

 
Frequency response curves for HPM and IPM based on eq. respectively and all the curves are con-

trasted in Fig. 3. Comparing the resulting curves with the multiple scale technique's response shows 
very low diversion between the results at the amplitude values above 0.2, but in the vicinity of zero, 
there is a slight difference, although it is not at a significant level. Also, for the forced vibration, IPM 
and HPM results are very close to each other in almost all ranges of amplitude.  

 

 

 
Figure 3: Frequency response curve of MEE. Comparisons between HPM, IPM and Multiple Scale tech-

niques 

5. Conclusion 

In the present paper, nonlinear vibration behavior of MEE rectangular composite smart material 
was studied. Since most nonlinear equations do not have a precise analytical solution, they should be 
solved using approximate methods. Therefore, using IPM and HPM perturbation techniques, frequen-
cy equations were derived for the general forced condition. Comparisons between the results of these 
two methods and those of other research was performed by utilizing the analytical and the FEM 
methods for the free vibration situation. The results show an adaptation between IPM and HPM and 
only 0.15% diversion was seen in comparison with the FEM. Also, 0.11% difference for analytical 
responses with perturbation techniques was viewed. Lower 1% diversity between all the results show 
the good agreement between these different relations and prove the highly accurate resultant relations 
in free vibrational conditions. Moreover, forced vibrational analysis was conducted. Similar to previ-
ous conditions, there is a very good agreement between IPM and HPM results in all ranges of ampli-
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tude although there is a small difference in the results of these two techniques and those of the multi-
ple scale in low amplitudes.   
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