24th INTERNATIONAL CONGRESS ON SOUND AND VIBRATION |CSV24
23-27 July 2017, London 26-27JULY 2017

\

LONDON CALLING

NONLINEAR VIBRATION ANALYSIS OF THIN RECTAN-
GULAR MAGNETO-ELECTRO-ELASTIC COMPOSITE MA-
TERIAL BY PERTURBATION TECHNIQUES

Seyed Alireza Seyed Roknizadeh

Shahid Chamran University of Ahvaz, Faculty of Engineering, Department of Mechanical Engineering,
Ahvaz, Iran

email: s.roknizadeh@scu.ac.ir

Hamidreza Talebi Amanieh , Seyed Mehdi Ghazi Mdrash
University of ISamic Azad, Faculty of Engineering, Ahvaz, Iran

This study attempts to analyze free and forcedineat vibration of rectangular thin Magneto-Eleetro
Elastic (MEE) plates. Considered MEE Plate is synglpported and the governing equations are derived
based on the classical plate theory. Derived egusitill be solved by two methods of perturbatitera-
tion Perturbation Method (IPM), Homotopy PerturbatMethod (HPM), and at the end the results ofdeali
tion will be gained by a comparison between thaioled results and Finite Element technique andytical
solutions. 0.1% difference between perturbatiomn@ues and other methods prove the accuracy of the
resultant perturbation equations.
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1. Introduction

There are few materials in nature which can cosgpieeral properties such as magnetic, electric,
elastic, thermometric, etc., all together. In sowterials, the appropriate responses are very week
they become applicable only if the temperatureery Yow. Even so, they are used only for very spe-
cial applications. The benefits of these materiaake them prominent and urge the researchers to
find ways for merging these properties into a sisgllestance.

Composite materials have become a solution forghipose. A composite material, by arranging
different layers with different properties, can dBne several characteristics in one place, conse-
quently leading to the emergence of multi- propergterials. Ferric material is introduced as a com-
posite material with at least two ferric charastizs (FerroElectric, FerroMagnetic and
FerroElastic)[1-3]. Since they can be utilized inltifwnctional equipment, they are quite attractive
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and have increasingly been subjected to recent studigdkese materials, the interaction between
different parameters can produce a new phenomémMhgneto-Electricity [4-8].

MEE material is a good means to reach the compounefiteof magnetic, mechanical and elec-
trical field for the previously mentioned composit®iezoelectric and piezomagnetic smart material
can be used in the form of woven or layer combinati®]. With a glance at its important abilities,
benefits and applications, a plethora of studie® lieeen conducted in a fast ascending rate to rexplo
them and to extract their governing equations.

Through a continuous harmonic movement in a magaeti¢or electric field, one can employ all
of composite abilities together. Therefore, in mampplications, vibration is the main activity in
equipment and crucial to analyzing. Although linediaracan lead to simplicity, its actuality and
thus accuracy may be reduced, so nonlinear anadysistical and undeniable for a high precision
system analysis.

Garcia Lage and Mota Soares presented a layerpais@l mixed finite element analysis of MEE
plates for static and free vibrational state [1-Chen and his coworkers studied the free vibnatib
non-homogeneous transversely isotropic MEE platels Btiangale and Ganesan worked on the free
vibration of simply supported non-homogeneous functipigaaded MEE finite cylindrical shells and
represented a finite element model for the evalnaifomagnetic and piezoelectric effects on natural
frequencies of material [13]. Ansari and Gholamalgped size-dependent nonlinear forced vibration
of magneto-electro-thermo-elastic Timoshenko nanolsdaased upon the nonlocal elasticity theory
[14]. Pakam and Arockiarajan investigated the otffe properties of 1-3-2 type MEE compo-
sites [15]. This paper tries to study nonlinear \ibraof this smart composite material by perturba-
tion techniques. The precise prediction of nonliresamillations has been of significant importance in
mechanical dynamics. Apart from a limited numbethafse problems, most of them do not have a
precise analytical solution, so these nonlinear tuashould be solved using approximate methods.

HPM and IPM are two of these approximation techniglieese procedures are convenient com-
putational techniques which yield analytical solasiovith a high accuracy. Unlike the traditional
numerical methods, they do not need discretizathliaearization. In addition, these techniques are
quite straightforward to write computer code wittd alo not require a large computer memory. As
one of their most remarkable features is that lysaaflew perturbation terms are adequate to olatain
reasonably accurate solution.

In the next sections, the basic relations and dyoaauation of motion will be derived first. Then
nonlinear vibrational analysis will be performed bging perturbation methods. Comparisons be-
tween the answers, and the analytical and the FiliMiens serve to prove the validity and accuracy
of the model.

2 .Modeling

Suppose a thin plate of MEE composite as shown r&id). For such a material, the basic Equa-
tions are presented as follows [16]:

o=Ce-eE -gH 1)
D =e'¢+nE +dH )
B=q £+dE + uH 3)
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Figure 1. Schemati representation of an MEE composite [15]

Where,o, D and B are the stress, electric displacement, and magimeliction (i.e., magneti
flux) respectively;e ,EandH are the strain, electric field, and magnetic fie&spectively C,7 and
uare the elastic, dielectric, and magnetic permigalmibefficients, respectivele,qandd are the
piezoelectric,piezomagnetic,antagneto electr coefficients, respectively. Thelatedmatrices for
MEE material, are introduced in[16]

Also the relationship between the electrical figlk electrical potential, and - magnetic poten-
tial is:

E. =-& H.=-¢, (k=x,y,z) 4)
Thus Eqg. 1 to Eg. 3 becomes[17]
o, c, C, O]lg 0 0 el O 0 0 qy 0
o, t=|C, Cy 0 |7& t+/0 0 €,(¢ 0+ 0 0qylq O (5)
Oy 0 0 cu|l|Vy 0 0 0]le 0 0 0]y,

Dz — e31 eSlj|{£X } |:,733i| |:d 33i|
= - @, = l//z 6
{Bz} |:q31 q31 gy d33 ' /'133 ’ ( )
2.1 Equation of motion

For thin rectangular plates, and based on classiatd theory, stra-nonlinear disfacement rela-
tion is [18]:

_ 1 5
Ex _u,x +EW,X

£ =v, +iw?
y Y 2 Y (7)
_1

Ey _E(U'X +V W W ,y)

e =¢_ =¢_=0

z Xz yz

The motion equation of the thin plate, based orclassical theory of von Karm{19] is:

M +2M +M +NXWVXX+2nywxy+Nyww+q=|(yv+lZWXXV\‘/‘W) (8)

X, XX Xy Xy Y.y
And the compliance relation [0]:
— 2
EX ,YY - yxy XY + gy XX _W Xy _W ,XXW yY (9)

in which N represents forces, M shows moments anthkeignertial momentum and is definec
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N, N, NW}T:I:Z/ZZ{JX o, o} d
h/2

{m, My m} =0 {o, o o} e (10)
{1o 1} :I.hh//zz{l 2’} poz

After defining stress function (F), we have [21]:

0& = FJN-+E%f¢k +'q3ﬂ01
gy = F oot €@, + Qs , (11

Oy = —F'Xy

Compliance Eqg. 9 is simplified as

1 2 2
) T )Py TWoy ~W W, (12)
Ce C2—C

11 12

Cll (F

2 2
—C
11 12

S XXXX

c

Simply supported rectangular plate boundary condigalefined as:

w=w_ =0 (x=04a)

w=w, =0 (y=0b) (13)
and the boundary condition for closed-circuit is:
oz, N =w(z,£N)=0 (14)
If we get the transverse displacement as
w (x,y)=hf ({t)Sin(zx/a)Singzy /b ) (15)

then by replacing Eq. 15 into 12, eq. 16 is derived

Cy, 1
F +F +(— -
2 _Cz ( JXXXX yyyy) (C66

11 12

2, _’h 2()
e T

11

{Cosgx/a)Costry /o) (16

c c

To solve this PDE, we should get F as:

F =ii3m Cos(p 77x /a)Cosq 7y /b | a7

q=0p=0

By substituting Eqg. 17 to Eqg. 16 and Eqg.15 with E2jand by applying Galerkin method for PDE,
we arrive at a nonlinear ODE:

f +aff +fBf 2+af *=Q CosQt (18)

in which ¢, is the natural frequencis the excitation amplitude, ar and 3 are nonlinear
stiffness matrix coefficients represented as
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h'(a’ +b*)(ue’ ~cdi-2d e g, +ng.rcnu)|
a)ﬂ = ”Z 2, 2 Z“ 2 2, 2 2 2 2 (19)
ab'p[l2ab -mh'@ +b ), 4, —d.)
B=0
ye 3m*h*@*+b )’ -cy) (20)
4a’n’c, p,ll2ab? - mh *@%+b %)
g= 1922°b 7,
mh?p[l2ab - m’h *@’+b 9]
3. Nonlinear equation solving
Primary resonance of the system is studied analltiby applying HPM and IPM
methods on Equation (18),
3.1 HPM
The main feature of HPM is as follow [22]:
L) -L(fo)+PL(f o) +P(B 2 +av?) =0 21)
in which L(f) is
_di
L(f)=—5 +aff (22)
dt
By assuming that the first approximation is
fo(t)=ACosuyAt (23)
We can find the ratio of nonlinear frequency taunatfrequency as:
. -
p= e 9A0_Q (24)
4of Ay
3.2 IPM
In this method, a nonlinear equation is first agethwith the standard form [23]:
f +h(f ,f,f t)=0 (25)
Then we ge{ ©)=Y 1) and rewrite the equati(¥r{t) =-h(f,y,yt) (26)

Now, by getting the initial guess function as bello

f (t)=Acos) 27

If we follow the method, the ratio of nonlineardteency to the natural frequency will be repre-
sented as:
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.
) :\/1+ 8AB , 3aA” _ 4 coft 28

3af  Ab  Aw

4. Results and discussion

4.1 Free vibration

In order to investigate mentioned solution methogdigs, a 50x50 rectangular isotropic plate with
the properties specified in Table 2 is considered.

Table2: Thin rectangular MEE plate Properties [24]

C,, =21.3x 16° Nm™ C,, =11.3x 16° Nm

Cy =5x10°Nm™ e, =-2.71Cm™

s, = 222N (Am)* N, =6.37x10°C ym)*
14, =0.839 10* NS’C ™ d,, = 2750x 10° NS YC )"

0, =5550Kgm™®

In Table 3, the ratios of nonlinear frequency te tiatural frequency obtained by IPM and HPM
are presented and compared with multiple time saakthod [25] and finite element method [26]

Table 3: comparison between methods

A=Wmax/h
0.4 0.6 0.8 1.0
HPM 1.02027 1.04505 1.07880 1.12069
IPM 1.02027 1.04505 1.07880 1.12069
FEM [26] 1.02049 1.04559 1.07959 1.12239
Analytical [25] 1.02032 1.04525 1.07936 1.12197

As clearly shown in Figure 2, there is a very gagteement between HPM and IPM results in the
free vibration analysis with analytical and FE antly 0.15% difference has been viewed in compar-
ison with the FEM and 0.11% with the analyticap@sses.

A-

144 TT'PMHPM

* FEM

142 ~—~ANALYTICAL
11 -
1.08

1.06 |
e
1.04

1.02
0.4 0.5 06 0.7 0.8 0.9 1

Figure2: methods comparison.
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4-2 Forced vibration

For the mentioned rectangular MEE with the givenatisions and properties, the frequency

Responses are derived by IPM and HPM techniques2®gnd Eq. 30 show the Resulting rela-
tions.

3aA*, , X
- /\ = _ >
(o 3 ) o (29)
3aA? 2.0 Q
—_ A =
(0 3 ) A (30)

And Eq. 31 shows the frequency response solvebtidynultiple scale technique [25]

(CT__BCY;\Z)Z/\Z - (?2

3 acf BD

Frequency response curves for HPM and IPM basestjorespectively and all the curves are con-
trasted in Fig. 3. Comparing the resulting curvés whe multiple scale technique's response shows
very low diversion between the results at the aonbdi values above 0.2, but in the vicinity of zero,
there is a slight difference, although it is noaatignificant level. Also, for the forced vibratidPM
and HPM results are very close to each other imstall ranges of amplitude.

A

0.3- Sl 55

0.25-
0.2~
0.15-

01~

i i’ T ‘ (o]
-0.5 ° 0.5 1 15 2 2.5

Figure 3. Frequency response curve of MEE. Comparisons leetW®M, IPM and Multiple Scale tech-
niques

5. Conclusion

In the present paper, nonlinear vibration behagfoMEE rectangular composite smart material
was studied. Since most nonlinear equations dbaw a precise analytical solution, they should be
solved using approximate methods. Therefore, usiipand HPM perturbation techniques, frequen-
cy equations were derived for the general forcedlitmn. Comparisons between the results of these
two methods and those of other research was pestbiioy utilizing the analytical and the FEM
methods for the free vibration situation. The rssshow an adaptation between IPM and HPM and
only 0.15% diversion was seen in comparison with FEM. Also, 0.11% difference for analytical
responses with perturbation techniques was vielader 1% diversity between all the results show
the good agreement between these different retatind prove the highly accurate resultant relations
in free vibrational conditions. Moreover, forcedbrdtional analysis was conducted. Similar to previ-
ous conditions, there is a very good agreementdeiviPM and HPM results in all ranges of ampli-
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tude although there is a small difference in tteilts of these two techniques and those of thel-mult
ple scale in low amplitudes.
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