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ABSTRACT

In this paper. we present a

review of the basic notions of time

series analysis and spatial series

analysis. as well as the interplay

between them. It is demonstrated

that wavenumber-frequency processing

is a natural generalization of these

two analyses. The relation between

the single—channel and multichannel

cases is briefly discussed.

We start with the Fourier

relations for infinite duration.
continuous-time series and the

corresponding spatial series. In

practical applications. we are

limited in both available data and

processing ability; hence. we have

to estimate the desired quantities

from a finite data record. Also.

when using a digital computer for

our calculations. we are forced to

employ sampled data. A brief
discussion of time-space series

modelling and analysis is included.

I . INTRODUCTION

The analogy of spatial wave‘s'

with'temporal signals makes it
possible to treat them both in a

similar manner. A time series is a

set of observations generated

sequentially in time. In parti-

cular. a time series may be thought

of as one particular realization of

a stochastic process '[1]. For a

complex-valued zero-mean, wide-sense

stationary and ergodic process

represented by the time series h(t).
7- < t < s, the autocorrelation

function is defined by [2]

13%.“) = lim ——-

T
1

th) = lama-Ill: h'(t)h(t+r)dt (1)

where the asterisk signifies complex

conjugation .

Suppose that the time series

h(t) is passed through an ideal
narrow-band filter with bandwidth

Af. centered at f . and with unity

gain. Let h(t.l:.tt‘) denote the

resulting filter output. The mean

square value of the filter output is

given by

T 2
J' h (t.f .M‘)dt

.1 c

1
'1'.- 2T

(2)

The power spectral density of the
original process is defined by [2]

- v:(r.ar)
s (r) = lim -—————-—h Argo if

1 1 T 2
= lim IfElim ET I h (t.f.Af)dt]

' ar»o Tea —r (3)

The autocorrelation function

Rh(1) and the power spectral density

function 8 (f) form a Fourier

transform paIr. as shown by the pair

of equations

Sh“) ; ah(t)e'52"f‘dt (u)

ah(1) =- r sh(r)e32"'dr (5)
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Equations (II) and (5) are basic

relations in the theory of spectral

analysis of random processes. and

together they constitute the Wiener-

Khintchine theorem [2].

Let us now consider a travelling

plane wave propagating in space with

speed v in a certain direction. At

sOme particular instant of time. to.

the magnitude of the wave is a

function of its position in space.

Let Q be a spatial point determined
by- the position vector. 2. With

respect to some arbitary origin. as

shown in Fig. 1. The magnitude of

the wave at point Q is denoted by

3(2) = g(x'Q.yo.2Q).
dependence on all three spatial

coordinates.

For a spatially stationary

(isotropic) signal field 3(2) . we

define the space correlation

function at time to as

38(F) = lim 5:—%—:— r gi(E)g(24F)d2
L-Nn xsz
X
L»

L:.o (6)

where the triple integral is over

the volume ‘V of a cube with the

edges 2L . 2L and BL . and r is the

spatial lag vyector. he wavenumber

spectrum of the wave 3(2) 15 defined
in a manner similar to the power

spectral density of the temporal

time series.

Suppose that the multitude of

plane waves is impinging on a

vertical line array from different

elevation angles a. where e is

measured with respect to the normal

to the array. If the array sensors

are sufficiently closely spaced..we

can consider the array as a narrow-

beam spatial filter in'coordinate z.

with beamwidth A0. centered at 9c.

and with unity gain. Let g(d.sin6 v

sinAe) denote the resulting filtSr

output. where d is the distance

along the z-axis from the origin.

The mean square value of the filter

- output

indicating -

w2(sina .sinAa) can be

defined irF the same manner ‘as the

mean square value of the temporal

filter output. given by Eq. (2). In

general. the mean square value and

the corresponding wavenumber power

spectral density will depend on all

three spatial coordinates. or.

equivalently. on the wavenumber

vector v. Thus. by analogy with Eq.

(3). we may write

1
53(5) = lim :-

ALO A“

1 2 + e + 4‘
' [11m 7 I g (z.v.Av)dz] (7)

VNI' V

where V is a cube in space centered

at the‘origin. The vector wave-

number v plays a role similar to the

scalar frequency variable. f. Thus.

the Niener-Khintchine theorem in

spatial domain can be written as

58(3) = ; RS(F)e’32"‘“"’dF (a)
Vr

ns<r) = I 33(5)eJ2"(V'r)d3 (9)
V
V

where the dots in the exponents

indicate vector dot products. The

ranges of integration in Eqs. (8)

and (9) are infinite-extent three-

dimensional spaces. spanned by the

spatial lag vectgrs r and the

wavenumber vectors v. respectively.

Presenting travelling waves as

being dependent on spatial position

only. and not being dependent on

time. is only of academic interest;

we used it above merely to stress

the direct analogy between spatial

sereis and. time series. In

practice. travelling waves are also

time dependent. and so we write the

time-space series as s(t.z) or
equivalently. s(t.x.y.z).

For a time—space series which is

wide-sense stationery in both time
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and space (homogeneous). we define
the time—space correlation function

and the frequency-wavenumber

spectrum as follows, respectively.

 

1
R (t It) = 11m ——s ' T“ 16TLxl1yLz

Lx+u

L w

Ly...
Z

T I. § 99 § ->

‘ I I s'(t.z)s(t+r,z+r)dz dr
-T V

(10)
and

s (r 3) - 1m 1 [um—‘—
s I AfaO m; T... 2”

A34) V”

T 2 . . . .
' I I s (t.f.Af.z.u.Av)dz (11)

-T V

where all the quantities have the
same meaning as in Eqs. (1). (3).

(6) and (7). Similarly. the Wiener-
Khintchine relations between the
timefgpace correlation function

R (fur) and the frequencyzyavenumber
spectral density Ss(f.v) can be

written as a four-dimensional

Fourier transform pair [u]

ssufi) =

a 9 -O

J' I Rs(r.?)e'52"(f"“'r)m’- a?
-. v

r (12),

hand?) =

O 'O 'O

I r ss(r.5)e32“(f‘*“ ')d$ a?
-. v

“ (13)

We also define- the cross-

spectrum P (f.r).as the Fourier

transfonm 03 R (r.r) with respect to
s

t. that is.

Px(f.F) = ; ns<r.F)e'JZ"“dr (1n)

A wave component of*frequency f and
vector wavenumber v .has a. vector
propagation constant k = 2st. wave—

length A = l/lvl, and velocity of
propagation v with the.direction of

-v and the magnitude |v| = f/|v| =

fl.

Finally, we note that the time-

space series s(t.z) belongs to a
class of so—called "multivariate"

signals, i.e.. signals which depend

on more than one independent

variable. In our case. there are

one temporal and three spatial

variables, a total of four
variables. 0n the other hand.

s(t.z) is often treated as a set of
K time series at K discrete array

sensors positioned in§space. that is

we have sk(t) = s(t.zk). k = 1, 2,
.... K. In this case. we are
dealing with so-called "multi-

channel" analysis, i.e.. simul-

taneous analysis of‘K univariate

signals which depend on a temporal

variable only.

Table 1 Equivalence of Temporal

and Spatial Analysis.

TEMPORAL SPATIAL

position
2

wavenumber

vector, u
frequency. f

autocorrelation
R(1) at f0,

cross-spectrum

P(fo.r)

power spectrum wavenumbar

s(f) spectrum at f .

5(fopv) 9.3  
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Table 1 summarizes an

equivalence between the basic

quanitities in the temporal analysis

and the spatial analysis.

II. LINEAR FREQUENCY-MAVENUMBER ‘

S 5 OF TIME—SPACE SERIES

We now present the basics of the

linear methods of spectral analysis

of a time-space series that is

limited in both time and spatial

coordinates. Our presentation

closely follows the excellent

exposition given by McDonough [ll].

Array of sensors used in the

reception of travelling waves

represents the natural spatial

sampling mechanism. After' the

signals at all sensors are

frequency-translated into the

desired domain (IF of baseband). a

temporal processing can be performed

in a usual way.

Assume K array sensor arbitra-

rily positioned in space, positions

of which are determined by vectors

2 , k =1. 2, ....‘K. We now have K

dgta signals x(t.zk). corresponding

to each sensor. so that we are

dealing with multichannel spectral

analysis. Thus. for any pair (k.l)

of sensor signals. we can specify

the discrete-time estimate of the

cross-correlation function

.. N-m1 ' .
,z ) = i n x'(n,2k)x(n+m,z )

l

(15)

form=0.1. ....Mandk.1=1. 2,

.... K, where N is the total number

of temporal samples used in the

analysis and M is the maximum

temporal lag. '

n
M

1

,. The Fourier transform of

Cx(m. ,2]: in_,ti*me domain is the

estimate (f.z .21) of the cross-

spectrum. go. (fill). The indirect.

Blackman-Tukey estimate [3].

P(f.ik.51). is obtained by weighting

c<r,;k,z1) of Eq. (15) and taking
the finite Fourier transform.

yielding

A + +
Px(f.zk,zl) =

M “ » . -32 fm
x C (m,z .z )w(m)e " (16)

x k 1
m=-M

In order to apply the direct or

periodogram method [5.6]. we first

compute the row "cross-periodogram"

in frequency-space domain. as shown

by

e o I
Jx(f.zk.zl) = xk(r)x1(r)

N

=-1§[£
N n=1

xk(n,;k)e-J2"fn]

+ e-Jann
[ i: x (n.21) ] (17)

n=1

and then smooth it with an appro-

priate window function "(1‘). as

shown by ,

a
A o + +

Px(f.zk.zl) = .r Jx(e.3k.zl)w(r-e)de

(18)

Cross-spectrum estimators of

Eqs. (16) and (18) are identical.

Direct approach is more frequently

used since it is computationally

more efficient. In this section. we

assume that there is sufficient

number of data samples N, so that

segmenting the data and averaging

the periodograms can be performed to

provide variance reduction.

We now proceed to find an

estimate of the frequency-wavenumber

power spectral density. given by Eq.

(10). for a homogeneous travelling

Have. We shall make use of the

estimate of Eq. (18) of the

"frequency-space" cross-spectrum.

Only the direct method will be

considered. The procedure involves

the following steps: (1) Compute

the Fourier transform of the signals

'E3.41   
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x(n.§ , k : 1, 2. .... K. as
r011th

. 1 “ o -Jann
X(f.zk) = i “:1 x(n.zk)e (l9)

(2) Next. compute the periodogram in
the frequency—wavenumber domain by

' '3215';k2
X(r.ik)e n

(20)

where K is the number of array

sensors.
(3) Smooth the periodogram (20) by a
four-diensional window in frequency

and wavenumber li(f.v). as Shown by

K

1Ix(f,_;) ,= in

[
I
N

R1

5

s (:3) =
. - .

x r : w(r-o.$-fi)1x(o.fi)dfide
.4: V

" (21)

'Hhere Vv is an infinite volume in :-
space.

He can simplify expressions for
I UN) and sx(f.v) by assuming that
t e time-space window w(n.z) can be

factored as

-w(n.z) = wh(n)wr(r) ' . (22)

Then. the four-dimensional Fourier
transform also factors as

-o . o
H(f.v) = Wf(f)Hv(v) (23)

The estimate sx(f.3) can now be
written as

SXU'N) = I Hv(v-n)0x(f.n)dn (2")

where

cam-ll; :3“: 2)
x ' K k=1 1:1 x ' k' 1

-JZr;'(z—z)
.. k 1 (25)

and P‘U‘ikjl) is given by Eq.
(18).

Often, the discrete-space

version of the estimator of Eq. (2a)
is simply written in the following

form [7]

. I. K K
Sx(f.v) = x l:

k=1 1=1

“ + a l -o .
Px(f.zk.zl)yk(v)11(v) (26)

where

I. v.

. Jznv'lk
yk(\_l) = wke

k =1. 2, .... K (27)

with VI being available for aJust-

ment Nil some way to improve for

estimator properties. Often. w = 1

is used and the estimator of" Eq.

(26) is referred to as delay-and-sum
beamformer [7].

A number of temporal samples are

usually taken to be large enough, so

that both good resolution and small

variance of the Px(f.z .z) are
achieved. To obtain comparable

performance in wavenumber danain.

spatial extension of apparatus'

dimensions is required. The

alternative is to use nonlinear

spectral estimator algorithms which

we discuss next.

III. NONLINEAR FREQUENCY-HAVENUHBER

' ANALYSIS AND SIGNAL MODELLING

In this section, we briefly

mention some new nonlinear methods

of frequency-wavenumber spectral

analysis. .

The maximum likelihood (ML)
method. introduced-by Capon [8]. can
be formulated in the following way.

The ML filter is that filter Which

passes signal at frequency component

1‘ undistorted while suppressing all
other canponents. including noise.

The output power of that filter is

minimized under the constraint that

the signal at frequency f“ is passed

9.5
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undistorted. The obtained minimum

power is the actual ,ML estimate of

the frequency-wavenumben spectrum

and is given by [3.8] '

“ ‘ e H + " -1 + -1
= PSxmmmuv) [g (v)_x(n) 5(v)]

(-28)

where 3(3) - is a ."beam-steering"
column matrix at frequency. fn.

given by

T _. J2m;';1

_e;(v) =[e . ...'.e l.
a (29)

afld £x(n) is' an estimate of the
cross-spectral matrix whose l.k-th

element is given by Eqs. (16) or

(18), and K is the number of array

sensors. '

It was demonstrated that} the

formulations of the estimator of Eq.

(25) as a maximum likelihood

estimator and as a minimum variance

unbiased estimator. both lead to the

same result [14.8-1. The resolution
properties surpass those of the

linear estimator’ of .Eq. (26) for

majority of signals in practice.

The maximum entropy (ME)

estimation is formulated as. a

following variational problem in

time-space domain (rigorous proof

can be found elsewhere [10]):
maximize the volume intregral

w a. 9

I log Sx(f.v)dv (30)-

o

with respect to the frequency—

wavenumber spectrum S (fnv). with

the constraint thatntine estimated

cross-power spectra qu‘ikil) for
each pair of spatial points 2k. 21

satisfy the .inverse Fourier

relationships in the wavenumber

domain. that is

A + -> _ 4
Px(f.zk.zl) - VI Sx(f.v)

V

Rut-(Evil) g
- e

1.k =1. 2. .... K (31)

In Eqs. (30) and (31). w is the

"cutoff" wavenumber in one

dimension. or spatial llyquist rate.

Vv is the volume encompassing

spatial extent 411 _<_ vi 5 W1, 1 = x.

y. z. in the wavenumber space. and

the frequency 1‘ is constant. It is

assumed .that the cross-spectrum

Px(f.zk.zl) has already been
estimated by some of the methods

discussed earlier.

The solution to the variational

problem given by Eqs. (30) and (31)

is ‘

s'x(MEZ)
H + a —1 ¢ H + e

{[5 (v)A(f)g(v)] _e_(v)g (v)dv

(r5) = [£“(G)A(r)g<;>1“ (32)

_= gxm . V (33)

where 3(5) is given by Eq. (29) and

A“) is the matrix of Lagrangian

multipliers 1k 1. and fix”) is the

estimated cross-spectral matrix of

the sensor signal. The form of the

ME estimator given by Eq. (32) is

similar to the ML estimator. Eq.

(26). It was shown that the ME

estimator is superior to the Ml.

estimator in the case of uniformly

spaced line array [9]. We note

that. in the case of the uniformly

spaced line array. the ME estimator

can be derived in terms of
prediction-error filtering [10-].

A large majority of the time-

series can be modelled by one of

three linear models: a moving

average (MA). an autoregressive

(AR). and a mixed autoregressive—

moving average (ARMA) [1]. It has
been demonstrated that the MEM works

most satisfactorily'with signals

which can be modelled by an All

prooess. while the linear methods

give the best spectral representa-

tion for an MA modelled process.

of Hold'sHowever . by virtue

9.6
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decomposition theorem. every process

can be represented by an MA process

of a sufficiently high ~. order or. .

equivalently. by an All process of

sufficiently high order. Thus. in

principle. we can apply any of the

above methods to any time series.

providing we use a sufficiently long

data record. For practical reasons.

we use themethod that corresponds

to a model with the lower order.

We use the same reasoning in the

analysis of time-space series. If

the series can be represented by an

MA model in both time and space, we

apply the linear methods.

Similarly. for an AR modelled time—

space series. the MEM is a better

choice. If the fitting models in

time and space are different. it is

the spatial model which determines

the choice of the method. because of

the more severe practical

limitations in the number of spatial

data samples.

It the time-space series is

modelled by an ARHA process. then

some ARMA spectral estimation method

is used. For example, the response

of the unifome spaced line array

to a multitude of plane'waves
impinging at" different angles may be

modelled as an ANNA process [11].
Development of ARMA spectral

estimation methods for temporal and

time-space series is 'currently an

active research field.

Finally. we note that in the

cases where the plane wave signals

cannot be considered as time and/or

space stationary. adaptive methods

of signal processing should be used

[12].

ACKNOWLEDGEMENTS

The author wishes to express his

thanks to Professor S. Haykin and
Dr. J. Kesler for fruitful

discussions on this subject.

 

Three—dimensional repre-

sentation of+the travel-

ling wave g(z)
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