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This paper considers numerical approaches to solve geoacoustic inverse problems to infer seabed
geophysical profiles from ocean acoustic measurements. Within a Bayesian formulation, the so-
lution is given by the posterior probability density over the seabed parameters of interest, which
combines data and prior information. For nonlinear geoacoustic inversion, the posterior prob-
ability density can be sampled numerically using Markov-chain Monte Carlo methods. These
methods can be computationally intensive, and a number of numerical approaches can be ap-
plied to provide efficient sampling while ensuring sufficiently wide exploration of the parameter
space, including principal-component sampling and parallel tempering. A key component for ef-
ficient/effective inversion is that of choosing an appropriate parameterization for the seabed, i.e.,
model selection. Recent trans-dimensional inversion methods model the seabed as sequence of
discontinuous, uniform layers and sample probabilistically over the number of layers. However,
in some applications it is preferable to consider smooth, continuous gradients in geoacoustic prop-
erties, which can be accomplished by parameterizing geoacoustic profiles in terms of Bernstein-
polynomial basis functions. These approaches are compared for the problem of estimating seabed
geoacoustic profiles from the dispersion of seabed seismo-acoustic interface waves.

Keywords: Geoacoustic inversion, Bayesian inference, model selection, numerical sampling,
interface-wave dispersion.

1. Introduction

The remote sensing of seabed geoacoustic properties using ocean acoustic and seismo-acoustic ob-
servations (data) is an important problem with applications in sonar, geology/geophysics, and marine
geotechnical studies. The specific problem considered here involves estimating the depth-dependent
shear-wave velocity profile, vs(z), from measurements of the dispersion (phase velocity as a function
of frequency) of seismo-acoustic interface or Scholte waves [[1]]-[6], which requires solving a nonlin-
ear inverse problem. Although geoacoustic inverse problems problems such as this were traditionally
solved via linearization, in recent years fully-nonlinear (numerical) Bayesian inversion methods based
on Markov-chain Monte Carlo (MCMC) sampling [7, 8, 9] have been applied. Important components
of a complete solution to an inverse problem include an objective approach to model selection (e.g.,
choosing an appropriate seabed parameterization) and parameter inference (estimating uncertainties
of the model parameters). Approaches to model selection considered here include the Bayesian in-
formation criterion (BIC), and trans-dimensional (trans-D) sampling over a set of possible models
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(choices of parameterization) [10, [11]. Efficient and effective sampling is of key importance in nu-
merical inversion, and methods such as principal-component sampling [11]] and parallel tempering
[12, [13]] are described.

Regarding model parameterizations, it is well known from both theoretical considerations and
observations that the shear-wave velocity profile in unconsolidated marine sediments of a uniform
composition generally varies in terms of a smooth, continuous gradient, rather than in discontinuous
layers, and often approximates a power law [3, 4, 5], such that inversions are sometimes carried
out directly for the parameters of a power-law relationship. However, parameterizing the model in
terms of a power law represents strong prior information which may not always be justified. This
approach does not provide independent verification that the sediment profile actually follows a power
law, and can lead to poor results if it does not. The goal of this paper is to compare the results of
nonlinear inversion based on a power-law profile to more general approaches to model selection for
parameterization. These include trans-D inversion based on an unknown number of uniform layers
[10;[11]],and a new parameterization in terms of Bernstein-polynomial (BP) basis functions [14] which
provides general gradient models.

2. Inverse theory and algorithms

This section provides a brief overview of a nonlinear (numerical) approach to Bayesian inference
and model selection which is applicable to geoacoustic inversion; more complete treatments are given

n [7]-[16].

2.1 Nonlinear Bayesian inference

Let M represent the model of a system of interest (e.g., the seabed), including the parameteri-
zation in terms M unknown parameters, and let m be a vector of a parameter values, assumed to
be random variables, constrained by a vector of N data d and prior information P(m|M). Bayes’
theorem states

P(m|M) P(d|m, M)
P(dIM)

P(m|d, M) ey
In Eq. . (d|m, M) is the conditional probability of d given model M and parameters m, and
represents the data information. Interpreted as a function of d, this term represents the residual error
density. However, when d represents the (fixed) observed data, the term is interpreted as the likelihood
of m. For example, assuming Gaussian-distributed errors of covariance matrix C, the likelihood is

1
(27)N/2|Cy|1 /2

L(m) = exp [— (d—d(m)) C;' (d—d(m)) /2], 2)

where d(m) represents data predicted for model parameters m. On the left side of Eq. (1), P(m|d)
is the posterior probability density (PPD), representing the total information for the model parameters
given the data, prior, and choice of model. The normalization term P(d|M) represents the probability
of the data given the choice of model (independent of m), referred to as the Bayesian evidence for M
(the evidence can be considered the likelihood of the M [[15]]).

For nonlinear inverse problems the PPD can be estimated numerically via MCMC sampling meth-
ods. Metropolis-Hastings sampling consists of generating new model parameters m’ via a proposal
density based only on the current model, Q(m’|m), and accepting the proposed model as the next
step in the Markov chain with acceptance probability [8]]

Q(m|m’) P(m’) £(m’)
Ve 3)

Q(m’|m) P(m) L(m)
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The Metropolis-Hastings criterion is applied by drawing a random number £ from a uniform distribu-
tion on [0, 1] and accepting the new model m’ if £ < A(m’|m). If m’ is not accepted, another copy
of the current model m is included as the next step in the chain.

While MCMC provides PPD sampling for nonlinear inversion, it can be numerically intensive, and
it is important to develop efficient algorithms. The choice of proposal density is of key importance in
an efficient algorithm. The optimal proposal density is given by the PPD itself; in this case all terms
cancel in the acceptance criterion such that all proposals accepted. Although the PPD is not available
as a proposal density in practical problems, a local linearized approximation can be used to define
an efficient proposal scheme. According to standard linearized inverse theory [[16]], the PPD can be
approximated by an M -dimensional Gaussian distribution with posterior model covariance matrix

C,=[ITC;'3+C;' ", )

where J is the Jacobian matrix of partial derivatives, J;; = dd;(m)/0dm;, C, is the data covariance
matrix, and C,, is the prior model covariance matrix of an assumed Gaussian prior density. To draw
individual parameters but take advantage of the full M/-dimensional form of the Gaussian proposal,
perturbations are applied in a principal-component (PC) parameter space where the axes align with the
dominant correlation directions (i.e., PC parameters are uncorrelated). The orthogonal transformation
(rotation) between physical parameters m and PC parameters m is

m=U'm, m = Unmn, (3)
where U is the column-eigenvector matrix of the model covariance matrix,
C,=UWU/', (6)

and W = diag[w;] is the eigenvalue matrix, with w; representing the PC parameter variances. Thus,
the PC decomposition provides both directions and length scales for effective (Gaussian-distributed)
parameter proposals [[11]. The procedure used here is initiated using the linearized model covariance
estimate given by Eq. (), with partial derivatives computed numerically. Uniform bounded priors of
width Am; are approximated by taking C, to be a diagonal matrix with variances equal to those of
the uniform distributions, i.e., (Am;)?/12. Following this initialization, nonlinear estimation of the
model covariance matrix is carried out numerically based on the ongoing MCMC sampling, with C,,
updated periodically (a diminishing adaptation).

The method of parallel tempering [12,13]] is a powerful approach for efficient/effective sampling
based on running a series of parallel, interacting Markov chains for which the acceptance criterion is
relaxed by raising the likelihood to powers 1/7" (where 7" > 1 is referred to as temperature). High-7
chains have an increased probability of accepting low-likelihood models, and hence provide a wider
sampling of the parameter space with increased probability of accepting large moves in the parameter
space, potentially bridging isolated modes. Conversely, low-1" chains provide concentrated sampling
but are prone to become trapped in localized regions of the space. Parallel tempering improves sam-
pling by providing probabilistic interchange between chains with different temperatures, ensuring that
low-T" chains can access all regions of the space, providing a robust ensemble sampler. For randomly-
chosen chains and uniform prior densities the acceptance probability of interchange between chains ¢
and j is

(7

) ) WD U/T)
A((my, To), (my, Tj)|(mi, T5), (my, T;)) = min [1’{£( Z)} ] .

L(m;)

Since chains at 7' > 1 provide biased sampling of the PPD, only the samples collected at 7' =1 are
retained. Combining PC sampling and parallel tempering, a separate PC decomposition/rotation is
carried out based on the sampling for each chain initiated from an estimate

1

Co(T)=[IT(TCy) ' T+C,] . (8)
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2.2 Model selection

Objectively determining the best choice of model (e.g., parameterization of the seabed) is a prob-
lem of fundamental importance. One approach to model selection is to adopt the model M which
maximizes the Bayesian evidence. However, evidence computation require numerical estimation of a
particularly challenging integral [[15],

P(d|M) = /P(m’|/\/l) P(d|m’, M) dm'. )

Alternatively, the BIC, which represents an asymptotic point estimate of evidence, can be applied:
—2log, P(d|M) ~ BIC = —2 log,L(m) + M log,N, (10)

where m is the maximum-likelihood set of parameter values for a particular choice of M. Since the
BIC is defined in terms of the negative logarithm of evidence, the goal is to determine the model that
minimizes the BIC. The first term on the right of Eq. (I0) favors models with low misfits; however,
this is balanced by the second term which applies a penalty for additional parameters. Minimizing
the BIC provides the model with the smallest number of parameters required to fit the data, prevents
over-parameterizing the model, and provides the preferred solution according to Occam’s razor.

Another approach to model selection is trans-D inversion [7, 10, [11]], which provides an ensemble
solution over a set of possible model parameterizations, sampled according to their probability. Let K
be a set, indexed by k, specifying parameterization choices with ) parameters denoted my. Bayes’
theorem for a hierarchical model including hyper-parameter £ can be written

P(k) P(my|k) P(d|k, my)

Pk d) = . 11
(o) = = oy P (i ) P(AIW, ) dim (an

In (11),P(k)P(my|k) is the prior probability of the state (k, my), and P(d|k, my,) is the conditional
probability of d given (k, my), which is interpreted as the likelihood £(k, my). The PPD P(k, my|d)
is defined over the trans-D parameter space spanning all choices of parameterization.

To sample the trans-D parameter space in (II)), a Markov chain must transition between models
with differing numbers of parameters. For such steps, acceptance is generalized to the Metropolis-
Hastings-Green criterion [7]]

Qk, my |k, ml,) P(K')P(mly|K') L(K,ml)

A(K',m), |k = min |1
(i w0e) = min | 0 et o) P(R) P(ngl) (5, )

Ml (12)

where |J| is the determinant of the Jacobian matrix for the transition from (k, my) to (k',m}).
Trans-D sampling according to (I2)) is referred to as reversible jump Markov-chain Monte Carlo
(ryMCMC). In geoacoustic inversion, jMCMC adds and deletes layer interfaces (referred to as birth
and death steps, respectively) in such a manner that |J| = 1. The requirements are that the number
of interfaces in the model changes by one at a step; that interface depths are independent from layer
parameters; and that only the parameters added/deleted in birth/death steps are changed, with pro-
posed parameters in a birth step depending only on the parameters at that depth in the current state.
PC proposal densities and parallel tempering have been shown to substantially improve efficiency in
trans-D inversion [11]].

Trans-D inversion is an automated scheme which has the advantage that the uncertainty in the
parameterization is inherently included in the parameter uncertainty estimates. However, as trans-D
inversion is typically parameterized in terms of an unknown number of discontinuous, uniform layers,
it may not be appropriate in applications where the model (seabed) is known to involve smooth, con-
tinuous gradients. A recent advance in Bayesian geoacoustic inversion for gradient-based models is
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Figure 1: Bernstein-polynomial basis functions versus normalized depth z for orders J=2, 3, 5.

the parameterization in terms of BP basis functions [[14]]. In this approach, the profile of a geoacoustic
parameter v over some depth range z € [0, z,,.y] is represented as a BP

J
u(Z) =Y g;b;i(2,J), (13)
j=0
where Z = 2/2zmax is normalized depth, {g;,7 =0,...,.J} are a set of J+1 coefficients (unknown

parameters to be determined in the inversion), and

b;(2,J) = (j) (1—2)79% (14)
are the corresponding set of BP basis functions, illustrated in Fig. [I] for orders J = 2, 3, and 5.
The BP basis functions vary smoothly, are localized with peaks at successively greater (normalized)
depths, and sum to unity at all depths. Further, BPs are stable in the sense that perturbing a coefficient
(model parameter) only effects the profile over a limited depth range, a desirable property for non-
linear inversions based on perturbing/accepting models. If BPs are chosen to represent geoacoustic
parameter gradients, choosing the order (J) represents a secondary model-selection decision which
can be carried out objectively using the BIC.

3. Interface-wave dispersion inversion

This section illustrates Bayesian inference and model selection for the problem of estimating the
seabed shear-wave velocity profile, v,(z), from inversion of seismo-acoustic interface-wave disper-
sion data [[1]]-[6]. This geoacoustic inverse problem has been considered previously using approaches
such as linearized inversion (with uncertainty estimation degraded by linearization errors and sub-
jective regularization), and nonlinear inversions including inversions for specific profile shapes (e.g.,
power-law profiles), layered models, and trans-D inversion.

Fig. [2 shows noisy synthetic dispersion data generated for two shear-wave velocity profiles:
Fig. a) for a power-law profile, and Figure b) for a linear gradient. In each case v4(z) increases
smoothly from O to 20 m depth, with a discontinuous jump to a higher velocity in the basement half-
space (true models are shown in Figs. [3] and ] respectively). The data include include independent
Gaussian errors of standard deviation 1 m/s, which are representative of measured dispersion errors.
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Figure 2: Noisy synthetic interface-wave dispersion data sets considered in this paper: (a) corresponds
to a power-law shear-wave velocity profile; (b) to a linear profile.

Fig. 3] show inversion results for the first (power-law) data set considering three different model
parameterizations, including inverting directly for the parameters defining a power law, trans-D in-
version, and BP inversion. The power-law inversion provides excellent results in terms of both the
depth to basement and the ability to resolve the profile shape. Uncertainties on shear-wave velocity
generally increase with depth over the 20 m gradient, and the basement depth and velocity are well de-
termined. In this case, including knowledge that the profile corresponds to a power law in the model
selection provides strong prior information. However, in many practical situations definitive prior
knowledge of the profile shape is not available; the other two inversion approaches in Fig. [3|do not re-
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Figure 3: Marginal posterior probability profiles from noisy synthetic data generated for a power-law
shear-wave v, profile (solid line) based on: inversion for a power-law model (left two panels), trans-D
inversion (centre two panels), and BP inversion (right two panels). For each set of two panels, the
left panel shows the marginal probability density for the basement interface depth, and the right panel
shows the marginal probability density of vs(z) (hot colours are high probabilities, and each depth is
normalized independently for display purposes).
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quire such information and represent more general approaches to model selection and inversion. The
trans-D inversion results in Fig. [3] (with 1-10 interfaces allowed) captures the correct trend of increas-
ing shear-wave velocity with depth, but not the profile shape. Rather, the profile consists of a series
of three approximately-uniform layers, separated by discontinuities, over the basement. Basement
velocity, but not depth, is well determined. The trans-D inversion fit the data to within uncertainties,
but the structural form does not correspond to prior knowledge of a smooth, gradient-based profile.
BP inversion results (polynomial order J =3 determined via the BIC) provide a good approximation
to the power-law profile shape and to the basement depth and velocity. Compared to the power-law
inversion, the BP profile slightly under-estimates the strong profile curvature at very shallow depths
(which the data have little sensitivity to) and has higher uncertainties below 15 m depth where the data
can be fit by either a stronger velocity gradient or a transition to the half-space. Overall, BP inversion
provides excellent results, given that no prior knowledge of a power-law profile shape is applied (i.e.,
the inversion is general).

Fig. ] shows inversion results for the linear-gradient data set (Fig.[2(b)). In this case, the inversion
based on a power-law parameterization produces good results in terms of v,(z) from about 2—12
m depth, but diverges from the true model at shallower and deeper depths due to curvature of the
profile. This also leads to a transition to the half-space at about 15 m depth which is erroneous but
estimated with high probability due to model mismatch. The trans-D inversion result again provides
a reasonable approximation to the true profile in terms of discontinuous layers, but is highly uncertain
on basement depth. Finally, the BP inversion (J =3 from BIC) provides an excellent approximation
to the true linear gradient with uncertainty increasing with depth, particularly near the half-space
transition depth (which is relatively uncertain but peaked near the true value).

4. Summary

This paper considered Bayesian inference and model selection for the geoacoustic inverse problem
of estimating the seabed shear-wave velocity profile from the dispersion of seismo-acoustic interface
waves. Marginal posterior probability profiles were determined by Markov-chain Monte Carlo nu-
merical sampling methods. Three approaches to model selection were considered, including assuming
the shear-wave velocity profile is a power law, trans-dimensional inversion, and inversion in terms of
a Bernstein-polynomial expansion. The two (synthetic) examples showed that BP inversion is well
suited to geoacoustic inversion where a smooth gradient in seabed structure is expected but the profile
shape is not known a priori.

Depth (m)

20 A

25 A 25 A

30

T T 40 T T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Interface Prob Shear-wave Velocity (m/s) Interface Prob Shear-wave Velocity (m/s) Interface Prob Shear-wave Velocity (m/s)

30

Figure 4: Marginal posterior probability profiles from noisy synthetic data generated for a linear-
gradient shear-wave velocity profile (solid line) based on: inversion for a power-law model (left two
panels), trans-D inversion (centre two panels), and BP inversion (right two panels).
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