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1. INTRODUCTION
The success of active sound control in enclesed sound fields will, in general,
depend on the spatial distribution and time historiea of the original,
primary, sources of sound, on the size of the enclesure and its acoustic
abasorption properties, and on the number and distribution of the secondary
sources and error microphones. If we restrict our discussion to
‘deterministic scurces of sound, some general guidelines on the active control
of enclosed oound fields excited at frequencies at which the modal dengity is
spufficiently low tc give isolated resonances, have been presented using a
medal formulation in [1]. It has been demonstrated that global reduction,
1.e., reductions in the total acoustic potential energy in the enclosure, can
be achieved if a number of remote secondary sources are pogltioned g0 as to
give independent control of each of the modes significantly excited by the
primary source distribution. Although the uae of this determiniastic model of
the sound fleld ie still valid at frequencies for which the number of
significantly contributing modes is greater than the number of secondary
_sources, no generally applicable results can be obtained since the behaviour
of the active control system then depends on the exact details of primary and
pecondary excitation of the enclosure. At high modal densities in the
encloaure, well above the Schreoeder freguency [2], the sound field is best
deacribed statistically and probabilistic models may give a more useful
deacription of the effects of various active control strategles.

In order to give some idea of the practical applicability of results in this
frequency regime, it fs useful to nete that the Schroeder frequencies in two
encloaures in which active control is currently being contemplated (the
interior of cars and the interior of medium size propeller alrcraft) have both
been experimentally estimated as being between 100 and 150 Hz.

Using statistical concepts it has been demonstrated [1] that global control at
high modal densities is only generally possihle if secondary sources can be
placed within half a wavelength of a compact primary source. Local reductions
in pressure, however, can always be achieved in a pure tone sound field using
a remote secondary source to drive the pregsure to zero at any one point in
the enclosure. This paper, which is an extension of reference [3), examines
the consequences of such a contrel strategy both near the point of
cancellation (the 'zone of quiet') and on the presaure field well away from
this peint.

2, THE ZONE CF QUIET

The instantaneous pressure at some @distance from a reference peint (x,) in a
pure tone diffuse sound field can be considered to be the sum of two
components, one perfectly correlated and one completely uncorrelated with the
pressure at X,
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P(Xo + &X) = Pol(Xo + &X) + Pyl(¥g + AX) (1)

where PR IPy(Xy + AX)> =0 (2)

and PeiXxy + £X) = R (axX)P(Xo) (3}
=0

in which <*> denotes spatial averaging in the field and Rx (ax) is the

=0
ppatial cross correlation function at the point X, in the sound field. The
ppace averaged value of the squared pressure at X, + AX is given by

<PE(X, + AX)}> = (P?(¥, + AX)» + Polixe + axX)? (4)

since <PclXo + SX)PylXe + 8X) = O, (5)
In a gpatlally homogeneous field

PEXp + X)) 5 ‘<P=(§°)> = P> {6)

4.e,, the uniform mean square pressure. Using egquations (3), (4) and (&) we
can thus express the space average squared component of pressure at X, + 4x
uncorrelated with the pressure at X, as

Py Xy + LX) = <PEr(1 - Ry?(ax)) (7

By adjusting the amplitude and phase of a remote secondary source the pressure
at X, due to some primary source can be driven to zero. We seek to describe
the average behaviour of the sound field at poeitiona close to Xo due to the
two sources. By driving P(Xx,) to zero, the correlated part of the pressure at
¥, + Ax 18 also Ariven to zero and we are left with the components of the
pressure fields due to both the primary and secondary scurces which are
uncorrelated with the pressure at Xo:

Pup(Xe + 8X)> = <Ppdr(1 - Ryf(2x)) (2)

where ‘E'T" ig the sum of the mean aguare pressures in the enclosure due to
the primary and secondary sources. If the primary and secondary sources are
simple monopoles then in a space average sense <pp?> will be proportional to
the sum of the squares of thelr source strengths.

A computer simulation of a three dimensional pure tone diffuse sound field has
been performed in which a randemly located secondary source ia used to drive
the pressure from a randomly located primary source to zero at another
randomly located observation point. The averaged result for the mean square
pressure at various distances away from the cancellation point are shown in
Figure 1. Also shown in this figure js the theoretical curve of equation {(8),
in which the spatial cross correlation appropriate to a three dimensional
Aiffuse field has been used

R (ax) = sin(k1ax!)/KIAx] (9)

The simulated and thecretical resulta for the field c¢lose to the point of
cancellation show good agreement and suggest that the zone of guiet, within
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which the pressure has been reduced by at least 10 4B with respect to the
primary field, has a diameter of about one tenth of a wavelength. The total
mean square pressure well away from the point of cancellation was observed to
rise to about four times that due to the primary source alone in this
simulation, although this wae not repeatable from one simulation to another,
The reasona for this lack of statistical stability are discussed in the next
gection.

3. THE INCREASE IN PRESSURE WELL AWAY FROM THE POINT OF CANCELLATION

' The complex pressure at X5 Qdue to both the primary and secondary sources, of
source strengtha qp and qg respectively, is given by

P(%p) = Zpap + Zg99 (10)

wvhere Zp and Zg are the acoustic transfer impedances between the primary
and secondary scurcez, and the observation point x,. Clearly the secondary
source strength required to drive P{x,) to zero is

z
dso = 'z":-qp (11)

Therefore

l9ggl?® _ 12pl®
Iapl?” = iZglZ t12)

The statistical variation in iqggl!? can now be described in terms of the
ptatistical propertiez of izpl‘ and 251%. The probability density function
of the in-phase and quadrature componenta of the pressure in a pure tone
diffuse field are Gausaian [2], The prebability density function of the mean
square pressure, and hehce of IZPIZ and |Zg!%, will therefore be of
Chi-squared form with 2 degrees of freedom. If the primary and secondary
sources ara a good deal further than a wavelength apart, then their pressure
fields will ba uncorrelated. The probability density function we are seeking
will thus be that of the ratio of two independent random variables each
distributed according to a Chi-squared probability density function with two
degrees of freedom, Such a function iz given by [4]

PDF(v) = {13)

1
(T +v2
where v is equal to [qgp!2/lgpi?,

Figure 2 shows the probability distribution function of the mean square
gecondary source strength divided by the mean square primary source strength
obgerved in the computer simulation described above, compared with the
predicted distribution described by equation (13). The curveg are seen to be
in gocd agreement. An important property of equation {13) is that the
theoretical mean and variance of the distribution are infinite. Since the |
total mean sBquare pressure in the enclosure depends on the mean square source ‘
strengths, this gquantity too must in principle have an infinite mean and
variance. This explains the lack of repeatability in the mean square pressure
egtimates in the aimulations described above,

|
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It is demonstrated in [5] that equation (13) can be considered as a special
cape of the more general Pareto distribution whoae dengity function is given by

N
B(v,N) = 1+ vyl (14}

vsing a single remote scurce to minimize the pressure at a single microphone
results in a Pareto distribution with N =1, equation {13}, If M remotely
placed sources are used to minimise the pressure at L well sBeparated sensors,
it is found that the observed probahility density function of the mean square
secondary source strengthsa is atill well described by the Pareto distribution,

with N = L/M,

The physical reason for the large values of secondary source gtrength, which
cause the lack of convergence in the single source asingle sensor case avove,
is clear from equation (11). If the secondary scurce happens to be placed at
a point in the room where at the operating frequency it has little influence
on the presgure at X,, then Zg!2 will be very esmall and 1qgp | %
correapondingly large. The next section considers ways in which this increase
in mean square secondary source strength, and thus total mean sguare pressure,
may be avoided.

4. POSSIBLE METHODS OF LIMITING THE INCREASE IN MEAN SQUARE PRESSURE AWAY
FROM THE POINT OF CANCELLATION

4.1 Hard Limiting

In any practical active control system the secondary source will only be able
to supply a finite maximum output, dgmaxs 3Y. If the position of the
gsecondary source and the frequency dictate that the modulus of the optimum
secondary source, dopt from equation (11), exceeds this limit, it is assuméd
that active control 1s abandoned or that the secondary source position can be
adjusted slightly so that the limit is hot exceeded. The probability density
function for the mean Bquare secondary source strength will new ba a modified
form of equation (13) with a truncated upper limit and a normalipation factor
to engsure that the integral of the density function over the interval is still

unity. This may be expressed {5] as

1 4+ ¥ 1
= max_
Py(v) rra— T+ V2 0 &V & Vg
(15)
PH(V) =0 vV * Vmax
in which v = Iggl®/lgpl® &nd Vmay = I9smax|2/19pi®. In contrast to equation

{13) the mean value of this distribution does converge for any finite vpgy,
and this expectation value of the mean square secondary source strength («v>)
is plotted against the upper 1imit imposed on its value (Vpay) in Figure 3.

4,2 Soft Limiting

Consider the general case in which the vector of complex pressures at L
microphones (p) is equal to the sum of the pressures due to the primary
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sources (Pp) and those due te M secondary soutces, whose complex strengths are
given by the elements of the vector qg, coupled to p by the matrix of complex
tranafer impedances Zg, 50 that

P = Pp + 2544 {16)

A cost function frequently used in optimal control which penalises control
effort as well as total error, and which effectively "soft limits"™ the
secondary source strengths is:

Jr = pp + nqgtlas
Jp = pplipp + ppMZaas + @a¥Zefpp + qal'izsMzs + AIlqs (17)

This is a Hermitian gquadratic function of gg which, since [Z.P2g + I} is
positive definite for g » G, has a unique glcbal minimum for

Qs = dso = -[ZaPZs + AI)" Z5%pp (1e)

Applying this result to the single sensor, single source case (L = M = 1}
considered above, a&nd asguming Pp = Zpqp, the optimum soft limited source
strength becomes

. Zg®Z

= _ 2a%2p .
Q80 (12512 + A) P (18]

This result reduces to equatien (11} for A = 0, although the probability
density function for lqsol‘/lqgl‘ now has a convergent mean for all A » 0.
This mean value of idagl2/1qpi* ta plotted against 5 in Figure 4.

The problems caused by the chance of a particularly small transfer impedance
from a esingla source to a single sensor can alsc be removed by using two
independently positicned secondary ascurces to control the pressure at a single
point {i.e., L=1, M = 2). This problem is overdetermined with no effort
parameter, 2, since the matrix zsﬂzs ia singular, but even very small values
of A allow equation (18} to be computed to define a unique pair of secondary
source strengthe, dqg, and Qg,. Which each couple as best they can to the
observation point via the relevant transfer impedances 25, and 25,. These
source strengths may be written:

. ~Zai*Zp - ___T%a7%p
Gos = 71z, 1% ¥ 125512 + BY7 982 = (73 12 125,12 + 5)0P

(20)

The expectation value of (|Qg,i* + lag,[*)/!qpi* is plotted against g in
Figure 5, which showe that the total source strength regquired to minimise the
presoure at a point ie considerably less than for the caese of a single source
(Figure 4). It is interesting to note that eguation {20) is valid as § - O,
in which case perfect cancellation at the control microphone will be achieved.
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4.3 Minimipation of the oOutput of Two Clesely Spaced Microphones

The digturbance of the sound field away from the point of control can also
generally be reduced by minimising the sum of the squares of the pressures at
more than one location rather than effecting canceilation at a point. If the
vector of compleX pressures at two such microphones is P, this is the pum of
the contributions from the primary source, dp, via a vector of transfer
impedances Zp and the secondary sSource qg via a vector of transfer impedances

Zgt
P = Zpdp + 2998 {21)

The cost function to be minimised by q is now Jp = PP ana the optimum
pecondary source strength is

H ,
Qo= — —z“ngqu (22)

Zg Zn

The probability density function of !qg,12/1gpl® now depends on the
relationship beween the pressure at the two observation points. If the
spacing is considerably lesa than a wavelength, the two pressurea are highly
correlated and the experiment reduces to that of cancellaticn at a point. A8
the two microphones are moved further apart, however, they will become less
correlated until, when the spacing is much greater than a wavelength, they
are statistically independent. The distributiocn function of iqgel*/iqpi? is
thus expected to smoothly change from a Pareto distribution with N =1 to a
Paretp Adistribution with N = 2, as the microphones are moved apart. In fact
by again considering the correlated and uncorrelated parts of the two
pressurea it can be argued [5] that if the microphones are spaced a distance
Ar apart tha effective Pareto parameter (N) is

N = 2 - ainf(kAr)/(kar)? (23)

and this has been found to be in good agreement with simulation results, A
property of the pareto aistribution is that it has a flnite mean for all N
greater than unity. The mean of the distribution of lagql®/lgp!® can now be
calculated for various microphone separations Ar, using the value of M in
equation (23). This is shown in Figure 5.

The computer simulation described above was also used to determine the average
reductions close to a pair of microphones with various spacings, when Jp was
minimised with a remote secondary source, These results are shown in Figure &
{5) in the form of an isometric plot of the average reductions at varicus
distances from the centre point of the microphones (Ax} for various microphone
separations {(Ar). The rise in mean square pressure well away from the
microphones as Ar is reduced is demonstrated. but the interesting effect ia
that instead of a single zone of quiet, two separate reductions in the
pressure are produced at the two miczophones when Ar » 0.4, i.e., for the
separation at which the pressures at the microphones are becoming uncorrelated.
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5., CONCLUSIONS

e Schroeder frequencies of various enclosurea such asa the cabins of aircraft
or cars in which active sound contreol ig currently being contemplated have
been measured as being between 100 and 150 Hz. Above this frequency in these
enclosures statistical models may give a more useful description of the scund
field than deterministic models. This paper considers the effects of
cancellation at a point in such a pure tone diffuse sound field both on the
£ield close to the cancellation microphone, the zone of quiet, and on the
field far from the cancellation microphone. Good agreement is observed
between theoretical results for these two regicone and computer simulationa. A
potentially large increanse in the mean sguare pressure away from the point of
cancellation ia seen to occur, although this can be controlled to some extent
Py: (a) hard limiting the secondary source strength, (b} soft limiting the
secondary source atrength{s), or (c) minimising the sum of the squares of the
pressures at two closely spaced microphones.
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Figure 1. The mean sguare pressure at various distances from a single point

of cancellation in a pure tone Adiffuse sound field, normalised by the mean
square pressure in the field before cancellation., Simulation results ovar-

200 averages (solid) and theory (dashed).
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Figure 2. Probability density function for the mean square secondary oource

strength required to cancel the pressure at a point in a pure tone diffuse
sound field, Computer simulation (Bolid} and theory {dashed).
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Pigure 3. Expectation value of the mean square secondary source strength for
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Figure 6. Expectation of the mean square secondary source strength required

to minimise the pum of squared pressures at two points peparated by a distance
Ar apart in a pure tone diffuse sound field,
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Ariven so as to minimise the pressure at one point in a pure tone diffuse
field with soft limiting parameter B.

‘{/f"‘
10.0 //:/’2;/
/,/gﬁ/Z/// 1

A Vi
N\c,.__ /{4 o
w00

z o

+=

e
[}

=

v

-20

=3

32

Figure 7. Expectation value of the mean square pressure in a pure tone
diffuse sound field after minimising the sum of square pressures at two
microphones (distances Ar apart), against the distance 4x from the mid-point
of the two microphones.
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