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1 . INTRODUCTION

The success of actiVe sound control in enclosed sound fields will, ingeneral,

depend on the spatial distribution and time histories of the original.

primary. sources of sound. on the size of the enclosure and its acoustic

absorption properties, and on the number and distribution of the secondary

sources and error microphones. If we restrict our discussion to
deterministic sources of sound, some general guidelines on the active control

of enclosed sound fields excited at frequencies at which the modal. density is

sufficiently low to give isolated resonances. have been presented using a

modal formulation in [.1]. It has been demonstrated that global reduction,
1.9;, reductions in the total acoustic potential energy in the enclosure, can
be achieved if a number of remote secondary sources are positioned so as to
give independent control of each of the modes significantly excited by the

primary source distribution. Although the use of this deterministic model of

the sound field is still valid at frequencies for Which the number of

significantly contributing modes is greater than the number of secondary

‘sources, no generally applicable results can be obtained since the behaviour

of the active control system then depends on the exact details of primary and

secondary excitation of the enclosure. at high modal densities in the
enclosure. well above the Schroeder frequena] [2], the sound field is best

described statistically and probabilistic models may give a more useful

description of the effects of various active control strategies.

In order to give some idea of the practical applicability of results in this

frequency regime, it is useful to note that the Schroeder frequencies in two

enclosures in which active control is currently being contemplated (the

interior of cars and the interior of medium size propeller aircraft) have both
been experimentally estimated as being between loo and 150 Hz.

Using statistical concepts it has been demonstrated (1] that global control at

high modal densities is only generally possible if secondary sources can be

placed within half a wavelength of a CDmpaCt primary source. Local reductions

in pressure, however, can always be achieved in a pure tone sound field using

a remote secondary source to drive the pressure to zero at any onepoint in
the encloure. This paper, Which is an extension of reference [3]. examines

the consequences of such a control strategy both near the point of

cancellation (the ‘zone of quiet') and on the pressure field well awayfrom

this point.

2. THE ZONE 0? QUIET

'l‘he instantaneous pressure at some distance from a reference point (50) in a

pure tone diffuse sound field can be considered to be the sum of two

components, one perfectly correlated and one completely uncorrelated with the

pressure at 5°;
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and PcQ‘o + A!) = R (ALUP‘KO)
Zn

in which 4-) denotes spatial averaging in the field and Rx (Alt) is the
9

spatial cross correlation function at the point z, in the-sound field. The

space averaged value of the squared pressure at 5° t Ax_ is given by

<p‘t5, + A5» = mango + A!» + (Pul()_(° o A!» (4)

since (Pctgo + A§)Pu(t_ru + A5); = o. (5)

  In a spatially homogeneous field

when + A5» = when» = «31> <6)

i.e.. the uniform mean square pressure. Using equations (3), (4) and (6) we

can thus express the space average squared component of pressure at 5° 4- A!

uncorrelated with the pressure at go as

(pump, + Ag); = (13ml — Rx=(A§)) (7)   

  

       

    

   

         

  
  

  

By adjusting the amplitude and phase of a remote secondary source the pressure

at 5° due to some primary source can be driven to zero. We seek to describe

the average behaviour of the sound field at positions close to 5, due to the

two sources. By driving 13(59) to zero, the correlated part of the pressure at

5° 4 A; is also driven to zero and we are left with the components of the

pressure fields due to both the primary and secondary sources which are

uncorrelated with the pressure at 3°:

mun-H50 + A!» = (131.2»(1 — Rx‘(A)_K)) (a)

where (131‘) is the sum of the mean square pressures in the enclosure due' to

the primary and secondary sources. If the primary and secondary sources are

simple monopoles then in a space average sense <prr‘) will be proportional to

the sum of the squares of their source strengths.

A computer simulation of a three dimensional pure tone diffuse sound field has

been performed in Which a randomly located secondary source is used to drive.

the pressure from a randomly located primary source to zero at another

randomly located observation point. The aversged' result for the mean square

pressure at various distances away from the cancellation point are shown in

Figure 1. Also shown in this figure is the theoretical curve of equation (a).

in which the spatial cross correlation appropriate to a three dimensional

diffuse field has been used

ISAAE) = SinUHAEIVKIAgl (9)

 
The emulated and theoretical results for the field close to the point of

cancellation show good agreement and suggest that the zone ofquiet, within
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which the pressure has been reduced by at least 10 dB with respect to the

primary field. has a diameter of about one tenth of a wavelength. The total

mean square pressure well away from the point of cancellation was observed to

rise to about four times that due to the primary source alone in this

emulation, although this was not repeatable from one emulation to another.

The reasons for thi lack of statistical stability are discussed in the next

section.

3. THE INCRESE IN PRESSURE WELL AWAY FROH THE POINT OF CANCELLATION

The complex pressure at 5° due to both the primary and secondary sources. of

source strengths qp and CL, respectively. is given by

P(1‘s): qup + lass no)

Where 21,
and secondary sources, and the observation point 5°.

source strength required to drive P( £0) to zero :is

end 25 are the acoustic transferimpedances between the primary
Clearly the secondary

Z‘15:) = 5:41;, (11)

Therefore

13591: = 133$
qul= l_3l‘ ‘12)

The statistical variation in “130': can now be described in terms of the
statistical properties of 125,!1 and IZSI‘. The probability density function
of the ill-phase and quadrature components of the pressure in a pure tone

diffuse field are Gaussian [2]. The probability density function of the mean

square pressure. and hence of lzplz and lzsl‘, will therefore be of
Chi-squared form with 2 degrees of freedom. If the primary and secondary
sources are a good deal further than a wavelength apart, then their pressure
fields will be uncorrelated. The probability density function weare seeking

will thus bethat of the ratio of two independent random variables each

distributed according to a Chi-squared probabilitydensity function with two

degrees of freedom. such a function is given by [4]

_1

(l +V)z

 

PDHV) = (13)

where v is equal to lqsoil/lqplf.

Figure 2 shows the probability distribution function of the mean square
secondary source strength divided by the mean square primary source strength
observed in the computer simulation described above. compared with the
predicted distribution described by equation (13). The curves are seen to be
in good agreement. An important property of equation (13) is that the
theoretical mean and variance of the distribution are infinite. since the
total mean square pressure in the enclosure depends on the mean square source

strengths, this quantity too must in principle have an infinite mean and

variance. This explains the lack of repeatability in the mean square pressure

estimates in the simulations described above.
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It is demnstrated in [5] that equation (13) can be considered as a special

case of the more general Pareto distribution \mose density function is given by

(14)  N
P(V.N) = {W

Using a single remote source to minimize the pressure at a single microphone \

results in a Pareto distribution with N = 1, equation (13). If H remotely

placed sources are used to minimise the pressure at L well separated sensors,

it is found that the observed probability density function of the mean square

secondary source strengths is still well described by the Pareto distribution:

with N = L/M.

The physical reason for the large values of secondary source strength. which

cause the lack of convergence in the single source single sensor case above,

is clear from equation (11). If the secondary source happens to be placed at

a point in the room where at the operating frequency it has little influence

on the pressure at go, then [2512 will be very small and logglz

correspondingly large. The next section considers ways in which this increase

in mean square secondary source strength. and thus total mean square pressure.

may be avoided.

4. POSSIBLE METHODS OF LIMITING THE INCREASE IN MEAN SQUARE PRESSURE AWAY

FROM THE POINT OF CANCELLATION

9 . 1 Hard Limiting

In any practical active control system the secondary source will only beable

to upply a finite maximum output, qsm. say. If the position of the

secondary source and the frequency dictate that the modulus of the optimum

secondary source, qopt from equation (11). exceeds this limit, it is aseuméd

' that active control is abandoned or that the secondary source position can be

adjusted slightly so that the limit is not exceeded. The probability density

function (or the mean square secondary source strength will now be a modified

form of equation (13) with a truncated upper limit and a normalisation factor

to ensure that the integral of the density function over the interval is still

unity. This may be expressed [51 as

 

PH”) ' _ (—1 + v)2
(15)

ll 0 < v E:PH(V)

in Which v = Iqalz/qulz and vmax = I‘lsmaxll/IQPI‘. In contrast to equation

(13) the mean value of this distribution does converge for any finite vim,

and this expectation value of the mean square secondary source strength (IV))

is plotted against the upper limit imposed on its value (vmax) in Figure 3.

 4.2 Soft Limiting

Consider the general case in which the vector of complex pressures at L

microphones (p) is equal to the sum of the pressures due to the primary
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sources (pp) and those due to H secondary sources, whose complex strengths are
given by the elements of the vector qs, coupled to p by the matrix of complex
transfer impedances 23. so that

p=pp+zsqg (16)

A cost function frequently used in optimal control which penalises control
effort as well as total error. and which effectively "soft limits" the

secondary source strengths is:

0-1- = 9% + sqs’fis

J'i' = PpHPp + Ppflzs‘Is + «15329:»? + swash, + mm (m

This is a Hemitian quadratic function of 95 whichl since [zsflzs 4 BI] is
positive definitefor a > a. has a unique global minimum for

‘Is = 930 = 42929 + an”ka (ls)

Applying this result to the single sensor. single source case (I. = M = J)

considered above, and assuming pp = zpqp, the optimum soft limited source
strength becomes

Z'Z
=—_fl_8_

“5° (Izsfiusiqp “9‘

min result reduces to equation (11) for n = 0. although the probability

density function for Iqsol‘llqgl‘ now has a convergent mean for all s ) o.
This mean value of quOH/lqpl is plotted against a in Figure 4.

The problems caused by the chance of a particularly small transfer impedance
from a single source to a single sensor can also be removed by using two
independently positioned secondary sources to control the pressure at a single
point (i.e.. L = l. H = 2). This problem is overdeterminea with no effort
parameter, s, since the matrix 25523 is singular, but even very small values

0E 9 allow equation (18) to be computed to define a unique pair of secondary

source strengths. q“ and q“. vnich each couple as best they can to the
observation point via the relevant transfer impedances :5, and 252. These
source strengths may be written:

-z 'z -z ’2...s;. ......_____ = _-__-EL_J___________1p! clsz “25111 + '25:” 4, E’QP (20)

'me expectation value of (1915,” + Iqszl‘qupl‘ is plotted against a in
Figure 5, which shows that the total source strength required to minimise the
pressure at a point is considerably less than for the case of a single source

(Figure s). It is interesting to note that equation (20) is valid as a - o,

in which case perfect cancellation at the control microphone will be achieved.
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4.3 Minimisation of the Output of M Closely sated Microphones

The disturbance of the sound field away from the point of control can also

generally be reduced by mtntmistng the sum of the squares of the pressures at

nnre than one location rather than effecting cancellation at a point. If the

vector of complex pressures at two such microphones is P. this is the sum of

the contributions from the primary source, qp. via a Vector of transfer

impedances 2p and the secondary source gs via a veCtor of transfer impedances

23:

  

    
     

       
   (21)   

  

   

 

      

 

   

   

   

    

 

   
   

   

   

P=21flp*zsq8

The cost function to be minimised by q is now JP = P"? and the optimum

secondary source strength is

H

‘15:): — an?» (22)

The probability density function of Iqszlz/lqpl" now depends on the

relationship heween the pressure at the two observation points. If the

spacing is considerably less than a wavelength. the two pressures are highly

correlated and the experiment reduces to that of cancellation at a point. as

the two microphones are moved further apart. however, they will become less

correlated until, when the spacing is much greater than a wavelength. they

are statistically independent. The distribution function of lqsOI‘lquH is

thus expected to smoothly change from a Pareto distribution with N = 1 to a

Pareto distribution with N = 2. as the microphones are moved apart. In fact:

by again considering the correlated and uncorrelated parts of the two

pressures it can be argued [s] that if the microphones are spaced a distance

Ar apart the effective Pareto parameter (N) is

N = 2 — sin‘(kAr)/(XAI)‘ (23)

and this has been found to be in good agreement with simulation results. A

property of the Pareto distribution is that it has a finite mean for all N

greater than unity. The mean of the distribution of Iqsal‘flqpl‘ can now be

calculated for various microphone separations Ar, using the Value of N in

equation (23). This is shown in Figure 5.

 
The computer simulation described above was also used todetermine the average

reductions close to a pair of microphones with various spacings, when JP was

minimised with a remote secondary source. These results are shown in Figure 6

[5) in the form of an isometric plot of the average reductions at various

distances from the centre point of the microphones (A!) for various microphone

separations (At). The rise in mean square pressure well awayfrom the

microphones as or is reduced is demonstrated, but the interesting effect is

that instead of a single zone ofquiet, two separate reductions in the

pressure are produced at the two microphones when Ar ’ 0.“, i.e.. for the

separation at which the pressures at the microphones are incoming uncorrelated.

Proc.l.O.A. Vol 10 Pan 2 (1988)



 

Proceedlngs of The Instltute of Acoustics

ACTIVE CONTROL IN DIFFUSE SOUND FIELDS

5 . CONCDUS IONS

‘me Schroeder frequencies of Various enclosures such as the cabins of aircraft

or cars in which active sound control is currently being contemplated have
been measured as being between 100 and 150 Hz. Above this frequency in these

enclosures statistical models may give a more useful description of the sound

field than deterministic models. This paper considers the effects of
cancellation at a point in such a pure tone diffuse sound field both on the
field close to the cancellation microphone. the zone ofquiet, and on the
field far from the cancellation microphone. Good agreement is observed

between theoretical results for these two regions and computer simulations. A
potentially large increase in the mean square pressure away from the point of

cancellation is seen to occur, although this can be controlled to some extent
by: (a) hard limiting the secondary source strength, (1:) soft limiting the
secondary source strength(s), or (c) minimising the sum of the squares of the

pressures at two closely spaced microphones.
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Figure 1. The mean square pressure at various distances from a single point

of cancellation in a pure tonediffuse sound field, normalised by the mean

square pressure in the field before cancellation. Simulation results over-

200 averages (solid) and theory (dashed).

1,0

0.6

P.
dv

f

0,4

0.2

 

8 10

 
4 6

:quwW/iqp (0))?

Probability density function for the mean square secondary source

strength required to cancel the pressure at a point in a pure tone diffuse

sound field. Computer simulation (solid) and theory (dashed).

Figure 2.
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Figure 6. Exqusctauon of the mean square secondary sourcestrength required
to minimise the sum of squared pressures at two points separated by a distance

A! apart in a pure tone diffuse sound field.
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Figure 5. Expectation of the sum of mean square strengths of two sources

driven so as to minimise the pressure at one point in a pure tone diffuse

field with soft limiting parameter B.
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Fsgure 7. Expectation value of the mean square pressure in a pure tone

diffuse sauna fieldafter minimising the sum of square pressures at tun

microphones (distances At apart), against the distance Ax from the mid—point

of the two mScrophanes.
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