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l. Immune-non

mere are a large umber of noise and vibration control problems in Which
the excitation is periodic, or nearly so. The noise and vibration {run
reciprocating or rotating machines. or from electrical transformers are
obvious examples. It is often the case that the higher harmnics of nah
sources can be attenuated by conventional, passive control methods, Which
leave the lower frequencies relatively unaffected. It is in these situations

ihration control
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This paper addresses the general problem of adjusting the in—phase and
quadrature components of a pure tone fed to a mmber of secondary sources in
order to minimise some error criterion. file extension to a harmnic
excitation can then be made by superposition in the simplest case. he v
problem is first formulated in the frequency domain with an acoustic example,
and the concept of a quadratic error surface introduced. '

 

The in-phase and quadrature components of the source strengths of a mmber
of secondary acoustic sources can he represented by the complex vector q = q“
9 hr. The error criterion, :1, can be either the total acoustic potential.“
ener’gy in an enclosure [1], or the sum of the squares of the pressures at a
.number of locations (2], or the total output power of an array of sources
including the secondary sources [l]. in all these cases the relationship
lemon .1 and 5 can be expressed in the complex quadratic form:

J=sués*!'9+s”2+c (I:

Were I! denotes the seminal transpose and the interpretation of the matrix
Li, vector 9 and scalar c will depend on the problem considered. This
equation inplies that it J is plotted against any two components of the
variables represented by 3, than a bowl shaped surface is produced. as
illustrated in Figure i. It should be noted that the minimum value of .7, at
the bottom of this surface. and values of q“ and 'q necessary to achieve
this minimum will, in general. depend on the—values dull:l the other
components in q. In order to simultaneously minimise .7 with respect to all
of the variable; in q. a multidimensional error-surface can be postulated, by
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analogy with the three dimensional one above, Which will have a unique global

minimum for some particular set of parameters in 3, equal to 39, say. The

existence of such a global minimal aepende on the matrix A in equation (1)

being positive definite. a prvperty which can beshown to be true for the

cases considered above.

J

figure 1. The quodraetc

errar surface generated by

plotting the error crtterton.
J‘, ogotnst any tun variables,
tn thta case the tn-phoee and

quadrature components of

source q,.
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The granient of this surface with respect to each element of 5 can be .

calculated analytically by differentiating J with respect to the real and

imaginary puts of s and defining [l]

a at aa _
a5 dgn+jdgl'55*2

If all the elements or this vector are set equal to zero. the elements of

3 must be those which correspond to the minimum of this error surface. thus

(2)

5. = — a“! m

The minimal: value of J Vhldh corresponds to this set of source strengths is

given by .

a, = c - 25;"; (1)

min (emulation of the minimisation is thus analytically tractable and

allows a clear evaluation of the performs-nae of a control system from

acoustical considerations only, but cannot be directly used in a practical

control system. The properties or these equations, however. are‘imlicitly

used in all practical control system, and the remainder of this paper

illustrates this in the case of two approaches which have already been
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presented in the literature. We also introduce a third method which has grown
out of the formulation presented above. I '

2 . Influx M3103!

Consider the case in which the outputs of an array of 1.. sensors
represented by the complex elements of the vector p, are composed of the
linear superposition of contribution from a prisms? source. say, and those
from an array of M secondary sources with inputs represented the complex

» elements of 3, where I. > K. 'men

2(a) = ppm + gmgtu) , (5)

were the single frequency nature of the problem has been represented by the
evaluation of all quantities at a single frequency, In. The matrix 9 denotes
the matrix of transfer functions, evaluated at u, between each or,the
secondary source inputsand sensor outputs in the absence of the primary
field. Ii'he sum ofthe squared moduli of the sensor outputs is taken as the
error criterion. and may be denoted

J_= 2‘s (6)
The elements in the general col:th quadratic form above, equation (1). can
now be identified as: ‘

i=9“; E=§Hfizl s=2pflap m

and the set of inputs to the sewndary sources which minimises this ereror
criterion is thus [3]: '

g. = —(§“§)“§"Bp 1”

‘mis formulation has been generalised in the study of a related problem. that-
of “higher harmnic control' of helicopter vibration, _in which the secondary
input signals are applied as perturbation to the pitch angles of the rotor
blades. In this case the error criterion also includes terms proportional to
the sum or the squares of the secondary input signals and the sum of the
squares of the differentials of these signals to].

Returning to the acoustic case, consider the special case of equation (5).
in mean I. = )4. so that 5 becomes s square matrix and equation (0) reduces to:

so = 4:1,; - (9)

In this case the minimum in .3 corresponds to all the sensor outputs being
driven to zero. , .

The direct measurement of the elements of g and ' . togetheryiththe
use orpequation (9). has been suggested as a practical thod or evaluating
3 (5). However, in practice. the measurement or g and .129 cannot be
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achieved without some error, and the application of equation (9) with these

estimated parameters will result in some residual output from the sensors. An
iterative algorithm has been suggested for further reducing these outputs (5]

which will clearly compensate for errors in the estimation of £2. andeven

allow for slow dhangee in the primary excitation.

we consider here the question of the stability of the algorithm to errors
in the masur nt of the matrix 5. net the measured estimate of this matrix
be denoted by _. Assuming a good estimate of the stationary primary
excitation is obtained. the inputs to the secondary sources will be q“ say,
mere

51 = 4:3" Pp (10)

so that the residual output of the sensors. g“ say, are given by

2.= (pee-nap (u)

was proposed iterative algorithm involves adding an additional input to the
secondary sources given by

s;=-§m «m
so the new residual field is given by

p. = I; - 9 @‘un = [I — s é—‘PPP (13)

It can be seen that if this process is repeated n times. we obtain

2n =- I; - s E'anp (m

It the matrix [_I_ - git“) is expressed in normal form [10]. it can be

seen that the elements of 2,, will onlytend to re: with increasing n it the
modulus of all the eigenvalues of the matrix [_X_ — g _ *1 are less than unity.

vaeeépreee g as
_ =§+§=u+glg (15)

where E is the absolute error matrix and 5 is the fractional error
matrix. then

s 1?" =sllisl" us)

By assuring the real and imaginary parts of the complex elements of 5 are ran-
domly distributed with an approximately mussian distribution, a emulation

has been perform for various standard deviations or these elements to exam-

ine the eigenvalue spread of eqn.(l6) and hence the probability of the algo-
rithm being unstable. Insults or such asimulation involving the evaluation of
1000 such matriceswith orders 2.4.8 and is are given in Pig. 2‘ It can
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be seen. for example, that if the order of thematrix is 16 and the standard
deviation of the elements of g is 0.15, then there is a 60‘ chance of the
iterative algorithm being unstable.

It should be noted, however, thatthe fractional error matrix may be
written as

s = S"£ an
The magnitude of the elements of 5 thus depend not only on those of g butalso on the inverse of 9. Consequently. if g is in conditioned, largevalues of 5 will result. This situation can occur. for example, if two
sensors are placed close together, or u the response of the system is
dominated by a single, lightly damped node.
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Figure 2. The probabtltev of the iterative matria- algortthm bstng unstable

against the standard deutattan of the elements of the fractional.
error matrix- for uartoue matrix orders.

3. TRIAL MD ERROR

Rather than use the analytic equation describan the optfimal source
strengths, another practical approach to minimization would be to make use of
the shape of the error surf . It has been shownjbove that the sum of the
mean squared sensor outputs is a quadratic function of the in—phase and
quadrature signals applied to each of the secondary sources, assuming only
that the system is linear. This is true whether or not the sensor outputs.
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contain components at other harmonic frequencies, since these components will

be unaffected by the level of the excitation at the harmonic of interest.

Hmaever, such a 'broad band' error criterion will be less sensitive to
adjustments in the source strengths than the sum of the mean squared error

signals evaluated only at the harmonic being adjusted.

A variety of algorithms which exploit the shape of this error surface have

been presented by Chaplin and his coworkers [6]. some of these algorithms
perturb the iii-phase and quadrature components of one harmonic while
mnitoring the 'broad band' or 'narrow band‘ error criterion. If the error
criterion decreases as a result of this perturbation. another adjustment is

made to the output in the same fashion. This is a form of trial and error

control which relies for_ its convergence on the fact that the error surface
has a unique_ global If the output of each secondary source in a
multichannel system isadjusted segately in this way. the fact that cross
coupling exists \[ill'dot affect the stability of the algorithm. It will.

however. be necess to sequentially adapt all sources in turn a number of

times before the true global minimum is approached.

Another type oftrial and error algorithm discussed by Chaplin [s] is the
adjustment of the amplitude of a periodic signal at a number of fixed points

in the cycle. 'lhese are combined together using a synchronous waveform
synthesiser to produce the outputs for the secondary sources. This process is
exactly the same as adjusting the coefficients of a digital rm filter fed by
a periodic impulse train (7]. Such algorithms are often referred to as

working in the 'time domain‘ to distinguish them from the 'frequency domain'

algorithms described above.

In order to discuss the error surface for such algorithms it is useful to

reformulate the problem in the sampled time domain rather than the continuous
frequency domin. This turns out to be a more powerful description of a
dynamic controlsystem since it can describe and account for transient
behaviour. 'lhe frequency domain formulation above is essentially a steady

state description of the system to be controlled. After any adjustments are
made to the secondary sources using such frequency domain algorithms. all
transients must beallowed to die away before the new state of the system can
be measured (5].

The nomenclature used here is slightly different from that used above in

order to be more consistent with the signal processing literature [a]. let
the sampled output of the l‘th sensor be eg(n), which is equal to the sum of

the contribution from the primary source. d.(n), and contributions from each
of the secondary sources. 'ihe input to the m'th actuator is produced by

passing a reference signal. an), containing the correct frequencies. through

an FIR filter whose i'th coefficient is um. if the electrical transfer
function between the In'th secondary source andI'th sensor is itself modelled

as a J'th order FIR filter, whose j‘th coefficient is cm), then

H {1-) 1-1

aim = «mm + E 1: cm, : an an - 1 - 3) (la)
Ill=1 380 i=0
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The error criterion can now be defined as

L
J = :lg). 9! (n) (19)

 

men the overbar denotes that a time average has been taken. Since e.(n) is
a linear function of each Um, J must he a quadratic function of each of
these filter coefficients. Becuse of the quadruple emanation involved in
expressing J as an explicit motion of um, it is difficult to cast this
formulation in terms of the general quadratic form of equation (1). However.
since .1 can never be negative. and is obviously a quadratic function of the
filter coefficients, this error surface must also have a unique global minimum.
consequently each of the um coetlicients may be adjusted using trialand
error algorithms to minimise J, provided they are adjusted separately, as
discussed above.

C. MIC GRADIM

another method of adjusting each of the filter coefficients would be in
proportion to the negative of the gradient of the error criterion with respect
to that coefficient, i.e.. the method of steepest descent. For the k'th
iteration. this corresponds to

 

OJ
k 4- 1 = k - -— 20Vmfl ) “mu ) u "m ( )

Vhete u is the convergence coefficient. Note that in this case,

L — 1.
£1 = mm = 2 221m 21m '51 Mi .51 8:01) W ( )

and that from equation (is)

J-l
mfl=1£ cm, x(n-i-j) (22)

:0

This is a sequence equal to the one which would he obtained at the l'th'senlor
if the reference signal. delayed by 1 samples, was applied to the m'th
secondary source. We denote this sequence by rmm — i), so that

 

” L

rR = z I; °l(fl)rlm(" - 1) ' '(23)

Because of the time averaging in this expression for the gradient, the filter
coefficients can only be undated slowly by equation (20) as it stands.

PIoc.l.0.A. Vols Per“ (1986) 141

   



 

Proceedings of The Institute of Acoustics

mmmmmmmlmmoom

If, however. the instantaneous value of equation (13) is taken as an

approximation to its true value. then each of the filter coefficients can be

updated for every new sample of egtn) and the algorithm becomes [9]:

L
“(n+l)=um(n) —o I: en(n)rm(n-i) (24)

[:1

where u = 251.. Although the estimate of the gradient will probably be .

incorrect at any one instant, it must becorrect on average. me

instantaneous gradient may thus beconsidered to be the true gradient ‘

contaminated by some zero mean measurement noise. The algorithm is thus said

to use a 'stochastic gradient' estimate.

‘me derivation of the algorithm above places no constraint on the form of

the reference signal, except that it is not affected by the output of the

secondary sources. It is. however. extremely simple to apply the algorithm in

the case of a synchronously sampled sinusoidal reference signal of the form

x(n) =ICOBUI1'I/2) (25)

which has exactly a samples/cycle. In this case only two point adaptive

filters need by used since the input to the m'th secondary source (sm(n)),
for example. may then be expressed as

sm(n) = vmxm) + wmxm — l)

= umacosUm/Z) 4- um‘sinhm/Z) (26)

It is clear that in this case the two filter coefficients are proportional to

the in-phase and quadrature parts of the secondary signal. This special case

of the time domain formulation does then have a frequency domain

interpretation. In a similar way the filtered reference signal. rm”). can
be generated by passing x(n) through a two point FIR filter which exactly

matches the transfer function between source and sensor at the frequenw of

interest.

In order to demnstrate the properties of the algorithm for this type of

reference signal, a simple emulation has been performed of a system with two

secondary sources coupled to each of four sensors by transfer functions of the 1

form

Gnu”) =‘Fflmz.pm/(1 - bruit—Q”) ‘
as illustrated in Figure 3.

numerator in this expression represents an overall delay. the average

value of which is H samples, or 3': periods of the reference signal. The

denominator represents a simple 'reverberant' behaviour by arecursive term

which has an average tim constant of about lo samples or 2': periods of the

reference signal. '
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Fig. 3 Block diagram of the sLmuLotLon performed Utah too secondary sources
and four error sensors.

The error has been computed by taking the sum of the squares of all four
error signals, smoothed using a two point moving average. The way the error
changes over the first 256 samples of the simulation is shown in Figure 0 for
three values of the convergence coefficient a. If a = 0.002 (Figure es),
the algorithm is seen to converge, although not as quickly as when a =0.005

(Figure 41b). _'l'he overall delay in the reponse. due to the delay in the

models for each cm. is clearly seen in these figures. If a = 0.005. the
algorithm is seen to have converged within about 100 samples. or 25 cycles of
the reference signal. If the reference signal were at 100 Hz, this

corresponds to a convergence time of 250 ms. This compares favourably with
the 'reverberation time' of the system being controlled. which may be
estimated to he the overall delay plus three time constants of the recursive
part, which is about 100 ms in this case.

The final, residual, error cannot be zero when there are more sensors than
sources. It Can be shown however that the total error after loo samples. in
the case where o= 0.005. is within 20 of the value of the total error
corresponding to the theoretically optimal source strengths, computed using
methods similar to those outlined in the introduction. If a value of o
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larger than about 0.005 is used the convergence time begins to increase again

and the error begins to show a Characteristic oscillatory behaviour with time

as illustrated in Figure 4c. The amplitude of these oscillations increases

as a is further increased until the system becomes unstable for values of

a greater than about 0.05.

other properties of this algorithm are that it is very robust to errors in
the generation of the filtered reference signals. In fact the algorithm can

he made stable with nearly 90° phase error on these signals, indicating that
the algorithm is very tolerant to errors nude in the measurement of the

transfer characteristics of the syst to be controlled. The algorithm is

also robust to uncorrelated noise contamination of the sensor outputs and to

mild nnn— linearities in the response of the mtu to be controlled.

The East adaption tin: of the algorithm can be further demonstrated by

periodically modulating the magnitude or the primary excitation in the

simulation. The way in which the total mean square error varies with time

with and without adaption is illustrated in Figure 5, more the period of the

modulation is 200 samples or 50 cycles of the reference signal. It can be

seen that after an initial transient the algorithm is able to 'track' changes

in the level of the excitation and still provide substantial attenuation.

The properties of the stochestic gradient algorithm which are illustrated

in this simulation have all been observed in a practical implementation of the

algoriteo a fast microprocessor. his system has been used todrive

two loudspeakers in a room so as to minimise the sum of the squares of four

microphones.
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5 . COMIONS

Three possible algorithms for the multichaan active control of periodic

sound and vibration have been reviewed. They all rely on a knowledge of the

frequency of the primary source and are thus all 'synchronoue' with it. They

may be distinguished by a nlmtber of factors WhiCh include speed of

convergence, complexity of the algorithm. and thus cost of the hardware, and

their ability to react to non—stationary £ields. Another important

distinction between them is the accuracy with which the characteristics of the

system to be controlled must bemeasured in order to ensure that the control

system remains stable. The matrix inversion algorithm is seen to be very

sensitive to such inaccuracies. particularly for systems with a large number

of channels. At the other extreme, some of the trial and error algorithms

make no asstmlptions at all about the syst to be controlled. but pay the

price in their relatively slow convergence properties. The stochastic

gradient algorithm has been found to require only a rather crude estimate of

the characteristics of the system to be controlled in order to rapidly descend

down the error surface and achieve a stable convergence.
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