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1. INTRODUCTION

The objective of an active noise control system can normally be expressed as
being the minimisation of some well defined error criterion. For example, in
systems designed to control low frequency noise in ducts such an error
criterion may be the mean square value of the pressure at a single point
downstream of the secondary source. In orxder to actively control the sound in
a three dimensional space the criterion which perhaps is the most desirable to
minimise is the total acoustic potential energy in the space, although in
practice the sum of the squares of the outputs from a finite number of
microphones may be the only available error criterion.

The magnitude of this error criterion will depend on the values of all the
adjustable parameters in the active control system. There will in general be
many such adjustable parameters and the graph of the error as it varies with
each of these, the error surface, will thus be multidimensional. '

It is found that this error surface has a similar shape for a wide variety of
active noise control problems and so similar strategies can be employed for
minimising the error in different active noise control systems. It is the
purpose of this paper to discuss some of the properties of this error surface
in the types of-active noise control system applied to various problems.

2, HARMONICALLY EXCITED ENCLOSED SOUND FIELDS
A useful practical error criterion in this case appears to be the sum of the
squares of the outputs of a number of pressure microphones distributed in the
space [1,2]. Assuming the field is excited at a single, known, frequency
complex notation can be used to describe the inphase and quadrature outputs
from each of a number (L) of microphones; Vout(l), and the inphase and

quadrature inputs to a number (M) of loudspeakers VvV, (m).

. in
Defining the vectors,
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which are related via the L x M matrix C, where each element of C is the
complex electrical transfer function from each loudspeaker input to each
microphone output at the excitation frequency. We further assume that if all
of the voltages to the loudspeakers are zero the vector of microphone outputs
is equal to Vout" which is due to the primary noise sources in the enclosure.

We then have only to assume linearity of the acoustic field and the transducers
which allows the application of the principle of superposition. This leads to

to
~ =V _'+CV :
Vout out € in (L
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The sum of the squares of the microphone outputs may be expressed as
H

out Vout (where the superscript H denotes the conjugate of the transpose).
This is a real scaler, and is equal to i
L
H 2
=V = =
E out vout L lvout(z)|
— — =1
'H ' 'H H H ' H é
+ +
Vout Vout vout S-Vin Vin < Vout * Vin €< vin (2)

In which the first and last terms are real and the second and third are complex
conjugates - All terms except the first contain the real and imaginary
components of the terms of Vin' i.e. the amplitudes of the inphase and quadrature
input voltages to each of the loudspeakers. The highest power of any of these
terms is the second and so the scaler VoutH vOut must be a quadratic function of
these voltages. If these are taken as the variable parameters in the control
system the error surface is thus bowl shaped with a unique global minimum. Note
that if the controllable variables of the active system are the amplitude and
phase of each of the loudspeaker input voltages, the error surface also
monotonically falls to a unique minimum, assuming the phase is constrained to
‘be within some 360 degree range, although it is not quadratic in this case.

If the microphones have equal sensitivities and their output voltages are
proportional to the pressures at various points in the field,P say, where P'

are those due to the primary alone, and the volume velocities of the loudspeakers
g are in proportion to their input voltages, equation (1l)is equivalent to

E=P' +Zg 3

in agreement with [2] where 2 is now an L x M matrix of transfer impedances.

This interpretation is not necessary however, since all acoustic and electro-
acoustic effects are accounted for in equation (1), provided they are linear.
For example the acoustic loading effects on the loudspeakers, if they have a

finite internal impedance, are automatically accounted for in equation (1).

The erxror surface is only defined for steady state sinusoids at a single
frequency, so if any changes are made to the inputs to the loudspeakers, all
transient effects must have decayed away before the state of the system can
properly be expressed by the equations above and the concept of the quadratic
error surface can again be used. Because the shape of the error surface is
particularly simple, with a unique minimum, a variety of strategies may be
employed to vary the loudspeaker input voltages in such a way as to move down

the error surface. An obvious example is the method of steepest decent, although
even a simple trial and erxror algorithm will, eventually, succeed.

3. BROADBAND NOISE PROPAGATING IN DUCTS
Consider a duct system in which plane waves generated by a primary, broadband,
noise source are picked up by a "detection" sensor whose output is fed to a
secondary electroacoustic socurce via some electrical £filter called the
controller. A measure of the attenuation achieved with such a system can be
obtained by taking the mean square output of an "error" sensor placed downstream
of the secondary. In order to derive an expression for this error criterion as
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a function of the coefficients of the filter used as the controller, assume
that the primary source is itself electroacoustic [3 and is driven by a
voltage Vp. Such a system is illustrated in fig. 1
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Figure 1. Active noise control System in a duct with an
electroacoustic primary source driven by a voltage Vp.

Although the assumption of an electroacoustic primary source is rather
artificial it is a useful one for purposes of discussion. ‘If the input voltage
to the secondary source is Vs and the output voltages from the detection and

error sensors are Vd and Ve respectively, we may define four electrical

transfer functions as:

a a a
A2 (v B~ |V c=lv F= v
2 g o e g
. 1
Vp V=0 vp V. =0 . Vs V. =0 . Js vV =0
s s o P p

We assume that the Vd and Ve are not'corrupted by noise uncorrelated with Vp.
If all elements in the system are linear, then, by superposition;

V =AV_+CV_ andV, =BV +Fv (4,5
e P s a P s .
Assuming Vs =T Vd' where T is the transfer function of the controller, the

behaviour of the entire system may be described by the equivalent block diagram
of fig. 2.

Ve

Figure 2. Block diagram
representing the

behaviour of the system
' in fig. 1.
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The spectrum of the output from the error microphone can thus be written

v = |A + BCT v (6)
€ -1

It should be emphasised that, provided all components of the system are
linear, all loading effects are again automatically accounted for in
this formulation.

We initially assume that the transfer function of the feedback path, F, is
identically zero, and that the controller is implemented as a digital FIR
filter so that T is the Fourier transform of its impulse response sequence.

In this case the spectrum Ve is linearly proportiocnal to the response T in the

equation above. If the Fourier transform of this expression is taken and the
linear properties of this transform considered, then it is found that the
instantaneous value of the output from the error sensor is directly proporticnal
to each of the values of the impulse response sequence of the controller, in
other words directly proportional to the coefficients of the FIR filter. Thus
the mean square value of the output of the error microphone must be a quadratic
function of these coefficients, the error surface is again bowl shaped and
simple gradient decent algorithms can be used to adjust the coefficients to
reach the unique global minimum in the error surface.

In practice the transfer function of the feedback path, F, is very rarely zero,
as will be discussed below. Assuming the product TF is less than unity however,
the expression for Ve, above may be expanded as

v, = [a +BCT (L + TF + (TF)2+...)]VP (7

Clearly Ve is no longer a linear function of T,so that the mean square output

from the error microphone will be dependent on the filter coefficientsyraised to
powers greater than two. Consequently the error surface will no longer have
the simple bowl shape described above.

Measurements have been made of the mean square output from a pressure microphone
used as the error sensor in a practical realisation of fig. 1, as the value of
one coefficient of a programmable digital FIR filter, used as the controller, was
varied. In the first experiment a random noise source was used to drive both
the primary source (directly) and the secondary source (via the controller).

The detection sensor was not used in this case, and F is zero. The graph of the
variation of the mean square error with the first filter coefficient, ho’ which

may be considered as a slice of the hyperdimensional error surface, is
presented in fig. 3. It is seen to be a good approximation to a quadratic
function, giving a minimum error at some well defined coefficient value.
This is in contrast however to the case in which the feedback path is made
deliberately large by using a pressure microphone as the detection sensor,
placed close to the secondary source, whose output drives the controller.

The error curve in this case (Fig 4) shows little systematic variation of the
error with the first filter coefficient until it is large enough to make

the open loup gain (TF) equal to unity at some frequency in which case the
system becomes unstable and the error tends to infinity.
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In order to assess the likely
size of the feedback term F, the
acoustics of the wave propa-
gation in the duct can be
analysed [4]. An expression
for F has been derived in terms
of the parameters below;
1) the ratio of the amplitude
of the ‘'downstream' travelling
wave produced by the secondary
source. to its input voltage
(8,

s
2) the ratio of the 'upstream'’
travelling wave produced by
the secondary to the
'downstream’ travelling wave
produced (DS),

w

3) the ratio of the output
voltage of the detection
sensor to the amplitude of
the 'downstream' wave
incident upon it (Hd),

4) the ratio of the output
voltages of the detection
sensor for equal amplitude
incident 'upstream' and
'downstream' travelling
waves (Dd) and

5) the gecmetry and
reflection coefficients of
the duct, as defined in

fig 1.

It is assumed for purposes
of this discussion that the
internal acoustic impedance
of both sources is high.

Figure 3.

Error curve for noise in duct with

FIR controller and no feedback path.

e T

b v,

’
. Vim0 » -
! D

Such an analysisvgives:

F = Hd

+ R
Ds 1

ProciOA Val7 Part”? (1QR8E)}

Figure 4.

Y
H D
s X { d Ds €

e-Y(l2 +‘2(10+£l)) .

Error curve for noise in duct with

FIR controller and appreciable feedback path.

Y& -Y (2
2
o+ Dd R2 e 2

R.R

~Y (22-4.)
1R,e 2 ]

/(1 - R.R.e )

+ 2(2,3 + 24D

2ve
12



Proceedings of The Institute of Acoustics

ERROR SIRFACES IN ACTIVE NOISE CONTROL

in which 2 = QO +ll + £2 + 23 + £4, the total length of the duct and y is the

complex propagation constant. Individual feedback terms in the square
brackets may be identified from fig 1. This expression indicates that F is
only zero if either Dd and Rl,or DS and R2 are zero, i.e. one transducer must

be perfectly directional and one end of the duct perfectly anechoic. Since
this is unlikely to be the case in practice, various authors 5,6,7] have
suggested that a special form of controller be used in which the normal filter

connecting Vd to VS has an extra electrical feedback filter in parallel,

connecting Vg back to Vd' If this latter filter is adjusted to have a transfer

function exactly equal to, but out of phase with, the electroacoustic feedback
path, F, then the output of this filter will exactly cancel the response due
to F and the original filter can be adjusted to minimise the error using
simple gradient decent algorithms.

One disadvantage of this approach is that the complexity of the two £filters
required in the controller will, in general, be much greater than that of an
equivalent single filter. The reason for this is apparent if the form of the
transfer function for F, quoted above, is compared to the theoretical form for
the transfer function of the controller needed to reduce v; to zero. This can

be calculated by setting equation (6) to zero to give an expression for the
"ideal” controller, as derived by Ress (3]:

T, = A/(AF - BC) @
The form of the ideal controller thus depends only on C, F and the ratioc A/B
Which is equal to (Ve/Vd)V - Each of these quantities can be measured
=°-
without the need to observe VP and so Ti can be estimated by purely electrical
measurements of vg, Vd and Vs' Using the analysis of the propagating acoustic
waves in the duct discussed above,expressions for A,B and C have been derived[4].

It is assumed that the transfer functions and directivities for the primary
source and error sensor. (H , Dp' He’ De) are defined by analogy with those
o 3

of the secondary source and detection sensor (Hs, Ds' Hd[ Dd respectively) .

This gives,
-y (2 +2.+2.) -2v4 -2v%
H e lzB{l-&-DRe 4lr+ pre °
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") -2y ~2y(2 +2 +8)
c=[v =HHe 3[1+DRe 4][1+Dae' ° 12
e’s e 2 s1

v _ _ -2v& )
s]v =0 [1 R R,e ] (12)

which when substituted into the expression for Ti above, gives

—Yg’z
T, =¢e /[Hst(l - D

-2Y2
X 2)} (13)

d Ds &

A result also derived by A. Roure [8].

The form of the ideal controller derived in [9] can be thought of as a special
case of equation (13) in which Hd’ Hs' Dd and DS are unity.

It is surprising how simple this expression is considering the complexity of
those for A,B,C and F individually. It should also be noted that equation
(13) is only dependent on the 'local’ properties of the active system between
the detection sensor and secondary seource, and is ‘independent, for example, of
the overall length of the duct or the transfer function or directivity of the
error microphone.

The length of the impulse response of Ti will generally be determined by the

recursive term in the denominator. At least one of the transducers can

generally, be made highly directional so that the product Dst is small and

the impulse response of Ti is well contained.

In contrast the length of the impulse response of the filter which matches the

-1
transfer function F will generally be determined by the term (1 - Rle e ZYZ)
in the denominator of equation (8). The reflection coefficients of the ends of
practical ducts can be close to unity, especially at low frequencies. In
this case the impulse response of the filter will take a considerable time to
decay and if the filter has an FIR structure, as suggested in [6], it must have
a considerable number of coefficients.

4. CONCLUSIONS

It has been shown that the error surface applicable to a practical active
noise control system for a harmonic three dimensional sound field will be
quadratic in form. The error will thus have a single minimum for a unique
set of input voltages to the secondary sources. This form of error surface
will only be found in active systems designed to control broad band noise in
ducts if no feedback is present between the secondary source and detection
sensor. This is unlikely to be the case in practice and one method of over-
coming the problem, by electrically cancelling the feedback path, is shown to
potentially lead to much higher order filters than would otherwise be needed.
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