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1. INTRODUCTION

An adaptive active noise control system may go unstable in any of several ways. if the electrical
controller has a finite impulse response and there is no acoustic feedback path the only type of
instability that can arise is that in‘which the adaptive algorithm itself becomes unstable. If,
however. the electrical controller has an infinite impulse response (i.e. it incorporates an electrical
feedback path) then it is also possible for instability to arise as a result of the parameters of the
controller being changed by the adaptive algorithm to values that would, were the system time-
invariant, be unstable in the classic "howling" fashion. A potential instability of this type results in
a complex interaction between the rate of growth of tlte Output of the controller due to the "classic"
instability and the efforts of the adaptive algorithm to reduce this output and return the system to a

. stable state. Finally. whether the electrical controller is finite- or infinite-impulse-response (FIR or
HR), there is a similar potential for instability if there is acoustic feedback present in the controller
structure. In this case the acoustic conditions play a major part in defining the stability propenies
of the controller.

The purpose of this paper is to demonstrate some of the effects that the presence of feedback has
upon the stability region of an active noise control (ANC) system. These effects have important
implications for the convergence performance of adaptive ANC controllers. The particular case that
is concentrated on is that of an HR controller in a configuration where there is acoustic feedback
from secondary source to detector. so the effects that are seen result from the interplay of two
distinct feedback paths. it is shown how changes in the acoustic feedback path. such as an
increase in reverberation. alter the environment in which the adaptive algorithm is operating. even
when the interplay between the acoustic feedforward and feedback paths is such that the
parameters of the ideal controller remain unchanged.
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Hm 1. Schematic diagram of the acoustic and electroacousflc parts of a single channel active noise control
system with acoustic fmdback between the secondary source and the daeclor
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2. THE SINGLE CHANNEL IIR ACTIVE NOISE CONTROL SYSTEM

Figure 1 shows a schematic diagram of the acoustic and electroacoustic parts of a single channel

active noise control system with acoustic feedback between the secondary source and the detector.

A block diagram representation of the complete system is shown in Figure 2. H03 represents the

transfer function from the input of the primary source to the output of the monitor, H01 from the

input of the primary source to the input of the digital controller, A and B the transfer functions of

the feedforward and feedback pans of the HR controller, and H23 the transfer function from the

output of the controller to the output of the monitor. H21 represents the transfer function from the

output of the digital controller back to its input via the (in general reverberant) acoustic path

between secondary source and detector. “

Ourput from monitor
microphone

(ideally identically

 

Figure 2. Block diagram representation of a single channel [IR active noise control system in a situation where

there is acoustic feedback from the secondary source to thedetector

The overall transfer function from primary source input to monitor output of this entire system.

Haven“. is given by -

A
Hoverall = H03 +,Hor Tm H23 (1)

The rest of this paper is devoted to studying the consequences of this equation for the simplest

possible non—trivial example of such a system. By taking a very simple system the mathematics of

the transfer functions remains tractable (though perhaps surprisineg complicated in view of the

apparent simplicity of the system studied). '
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3. ANALYSIS OF A SIMPLE REVERBERANT SYSTEM

3.1 Description of the transfer functions

The s stem discussed in detail here is that in which the lengths lo, I]. [2. l3. [4 are equivalent to 0,
0. l. . and 0 clock cycles of the digital controller. The transducers are all assumed to have ideal
responses (i.e. their transfer functions are assumed equal to l) and the sound propagation in the
acoustic system is assumed to be perfectly one-dimensional (so all sound propagating within the
system is taking place in left-to-r'tght and right-to-left directions only). Given these assumptions.
{1-) transfer functions corresponding to H03,H01_H21' and H21 can be substituted into equation
(1) to give

_ —(r]+1)§rg+l)§Az‘2—gl—Bzz —A)
H°'°'“"(z)'(1 —B)r1rzz'2+A (1 +1.) (1 + r2)z" — (1 —B) ‘2)

where r1 and r2 are the reflection coefficients at the left and right hand ends of the acoustic

enclosure and z" is the unit delay operator.

For the system described the ideal values for A and B are —2 ‘l and z -2 respectively. i.e. for
perfect cancellation of the primary source at the monitor position all the coefficients of A should be
zero except a1 and all the coefficients of B should be zero except b2. and these two coefficients
should have values of —l and +1 respectivel . Note that this result does not depend on the
reflecdons in the acoustic system; the trans er function for perfect cancellation in the one-
dimensional system considered here is the same whether or not Ihe conditions are anechoic. Hence
it is of particular interest to look at how Hovmn behaves as a function of a]. 1);. rt and r2.

Substituting A = a1 2 ‘1 and B = b2 1 '2 into (2) and taking the denominator gives

denonunatomflovmua» = r1 r2 b2 2 4 — (at ((r) + 1) (r2 + l) 4- r1 r; + b2) 1 ‘2 + l . (3)

3.2 Stability boundaries of the system

The stability of the system depends on whether or not all the poles of the overall transfer function

lie inside the unit circle. Equation (3) is a quadratic in z '2 so we can find the stability boundary in
an analogous way to the well-known stability triangle for second order systems.

1
pz_2+qz_l+1lobeslabie

are: p < t, p > (1 — q). and p > —(1 - q). Substituting from (3) into these inequalities gives the

following set of conditions for the poles of z 2 (and hence of z) to lie within the unit circle. and
thus for the active noise control system to be stable:

b2<——‘ b2>l+ "*1 "'1" andb2>—1——L)—LL1('H(’+1“ .(4)
rlrz’ l—rlrz ' 1+r1r2

The conditions that must be satisfied for a system of the form

The region in the grit; plane delineated by these inequalities is shown in Figure 3 for three pairs

of values of r] and :7. namely r1 or r2 = 0. r1 = r2 = 0.5. and r. = r; —i no.
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    (—1.1), the value for perfect
cancellation

Figure 3. Diagmm showing the stable region in the orb; plane for a two-coefficient IIR filter controlling the noise

in a reverba'antone-dimensional system with length equivalent to one clock pain: of the digital controller. The

three shaded regions correspond to a completely anechoic system. a tatally reverberant system, and a system in

which the reflection coefficients at the ends of the system are both equal to 0,5.

4. CONCLUSIONS

If there is no reflection at all from one of the ends of the acoustic system (i.e. r; or r2 = 0) than the

set of inequalities (4) reduce to b; < on, b; > 1 + a1. and b2 > —1 — at. The region that satisfies

these constraints is an infinite length strip in the a1-b2 plane running diagonally from top left to

bottom right and with the origin in its centre. The ideal values for at and b2, —1 and +1, lie

centrally within this suit: and any reasonable path from the origin to this Point. such as might be

followed by the coefficients of an adaptive HR controller initialised with the coefficient values

(0,0) and adapted by a gradient descent method , will lie entirely within the stable region.

The other limiting case that it is particularly instructive to look at is when both the ends are

perfectly refleCtive, i.e. r. =r2= l. The inequalities then become: b; < l, a] < 0, and
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b; > —1 — 2a]. so the stable region has shrunk from an infinite strip lo a triangle with the ideal
values for a] and b1 iyin at its upper left vertex and the origin at the centre of its right-hand side.
Hence particularly near tie start and the end of adaption the coefficient trajectory will necessarily
lie very close to the stability boundary and the random element inherent in any coefficient update
scheme may push it into the unstable region. Any such excursion, however short. will have
particularly deleterious effects on the behaviour of the the system if it happens when the filter has
already adapted a significant way towards its final value as it will cause a rapid increase in error
signal from the monitor which will result in a large contribution to the coefficient updates. The
coefficient values will therefore suddenly be altered in an unpredictable way, but in a way that is
likely to take them funher away from the aiming point, and this will greatly increase the time
required to achieve a steady state condition near the optimum. This type of behaviour has been
seen in simulations and to prevent it the convergence coefficient has to be so greatly reduced that
the convergence becomes irnpmctically slow.

Between the two extreme cases of one end anechoic and of both ends perfectly reflective the stable
region contracts ta idly as the reflection coefficients move away from zero sothat even with them
equal to only 0.5 e left-hand boundary is not very far from that for the limiting case of perfect
reflection. As the gradient of the error surface at the origin is directed along the negative al-axis
any gradient-descent based adaptive algorithm will cause the coefficients to head straight for this
boundary, with the potential to overshoot unless the convergence coefficient is kept very small.

5. SUMMARY

It has been shown that the size and shape of the region in coefficient space within which a
particular simple configuration of active noise control scheme using an HR filter depends strongly
on the reverberation properties of the acoustic system in which the controller is working even
though the coefficient values that are required for perfect control are independent of the
reverberation. The greater the amount of reverberation in the acoustic system, the greater is the
probability of an ada tive control system becoming unstable at some time during adaption of the
coefficients. The wor reported here demonstrates analytically for a special case the reason for the
often—observed henomenon that the greater the reverberation within an acoustic system. the more
likely is an active control 5 stem to go unstable, even when the reverberation would not be
expected to alter the transfer unction that is required for perfect control.
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