
 

Proceedings of The Institute of Acoustics

WERIHENTS WITH A LEARNINGW FOR A SIMPLE PHONEI'IC WITION TASK

SM. Peeling and J.S. Bridle

Speech Research'Unit. RSRE. Mavern. Worcs. UK

INTRODUCl‘ION

Recent developments in adaptive network algorithms [1] offer the possibility of
application to various speech pattern processing areas [2]. Most applications
so far have been to carefully contrived artificial problems (the only
application to a signifith pre-existing problem is for letter-to—sound
transformation for speech synthesis [3]). We believe that the application of
"Parallel Distributed Processing" [4] to speech deserves to be thoroughly
explored. but thechoice of initial applications needs to he made carefully. In
the work reported here we have chosen a speech recognition problem which is
attractive as’a learning experience because of its scale. and because of
previous experience on it using other techniques. The data. the specification.
and a program with creditable performance were all available. Quite apart from
the speech content. we can regard this experience as an attempt to replicate the
function of an existing "expert system". Although the problem may be simple
compared with the full phonetic recognition problem, it is quite difficult
enough to be getting on with.

THE LUPINS PROBLEM

Peter and Helen Roach of Leeds University put together a broad-class phonetic
recognition system (LUPINS) several years ago. as a step towards automatic
language classification. funded via JSRU [5].

Using their knowledge and insight as phoneticians. and their experience of the
particular task. they chose a few functions of the signal spectrum (acoustic
parameters. sg smoothed energy below SOOHz). then found a set of rules for
interpreting the pattern of these measurements in terms of 6 or more broad
phonetic segment classes (eg vowel. fricatiVE).

The system was developed and tested on a corpus of conversational recordings in
6 different languages. including male and female speakers. The LUPINS process
is in .several phases. which were originally separate programs. The acoustic
analysis process converts from waveform to raw acoustic parameters (this was
originally done in hardware. but is now available in software). The initial
parameter processing phase modifies the parameters by "normalising" and
"boosting". and computes extra "traces" such as heavily smoothed versions of the
originals. The main recognition program (HEP) then decides on a tentative label
for each 10ms "frame" (vector) of modified and augmented acoustic parameters.
based on data in that frame and 5 adjacent ones. The final phase groups the
tentative lablea using context and further expertise. to produce the required
sequence of phonetic segment labels.

The work reported here is an attempt to copy the function computed by the main
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recomition program of LUPINS. Since this phase looks only at a small "window"
around the current frame. and only labels that central frame. we can think of
the function computed by thisprogram as a (non-linear) transformation.

He have not attempted to learn the initial parameter processing. or the final
“clean up" phase. ML? should be suitable for the first phase. but for the final
phase something more like a dynamic programming algorithm' would be more
appropriate.

ALTERNATIVE APPROACHB T0 WELLING

We discuss here only the "instantaneous labelling problem“: moving from a set of
monuments associated with an instant of time to a label appropriate to that
time.

The reference LUPINS system applies a series of tests such as comparisons of
basic and derived measurements with thresholds and with one another, and logical
combinations of such conditions. Each step is easy to understand. but the
resulting system can be very difficult to understand and modify.

At the other extreme. consider a classic statistical pattern recognition
approach. Each class (corresponding to a label) is considered to have a
characteristic distribution in the space of measurements (or of "features"
derived from them). An approximation to each class distribution is derived from
the "training" data._ and the labelling decision at each instant is made on the
basis of the likelihood of each distribution giving rise to the current
measurements. In this case the principles behind the decision making are very
clear. but their validity is open to question, and the kinds of explanations
that can be given for particular decisions is rather unsatisfactory. If the
distribution for each class is assumed to be Gaussian. with equal variance in
all directions for all classes. then the maximum likelihood decision is given by
the class with the minimum (Euclidean squared) distance to its class mean [6].

The geometric pattern classification approach. on the other hand. concentrates
on the decision making process rather than modelling distributions.
Classification boundaries are placed so as to deal with the training data. and
it is assumed that the same boundaries will be satisfactory for the unknown
date. The special case of a linear (hyperplane) boundary is often chosen: it is
easy to implement (with a linear threshold function). there is a simple and
effective "learning" algorithm. and the linear case is appropriate for an
important sub-set of Gaussian maximum likelihood two class parametric
classification (specifically. when the two classes have equal covariance) [6].

The multi-layer logistic soft percepth (abbreviated MLP) generalises the
linear threshold unit. With an "LP having 2 hidden layers we can construct
arbitrarily complex decision boundaries [6]. The RH" BP procedure offers a
looming method. but it is not guaranteed to find the best set of weights. For
more information on the algorithms. see [1.2].
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THE DATA

For work reported here we have used a single excerpt from the ‘LUPINS recordings:
50 seconds from the start of the "Jacket" passage (adult male southern British
English). This is just an exploratory data set.

The data consists of about 5000 consecutive speech frames representing 7
different classes - Silence. Vowel. Nasal. Low. Fricative. Burst and a "don't
know" class. Unclassed. Unfortunately the classes are not evenly distributed
throughout the data._ In particular.there are only 9 examples of the burst class
whilst the silence and vowel classes together account for 861 of the data. This
makes it impractical to train on. say. the first 3000 frames since the network
could obtain 66: correctness by classing everything as silence. (This did
happen in an early run!) Instead. the network is trained on 36 examples of each
class. chosen randomly from the first 3000 frames. In the case of the Burst
class the data for the first five examples of the class is replicated to make up
the 36. The weights are updated after presenting the network with one example
of each class.

THE STRUCTURE

All experiments used the same basic structure. There is one layer of "hidden
units". and two layers of modifiable weights. All the input units are connected
to all the hidden units. We have some experience of different numbers of hidden
units. The inputs were either Just the original 1| "traces" (short-term power in
‘6 fequency bands) or these plus the corresponding ‘6 averages over one second.
We used 7 output units: one for each phonetic label (including "Unclassed").

THE LEARNING

The targets were i for the output unit corresponding to the correct class
(according to the MR? of LUPINS), and O for the other six. When reporting
performance we take the largest output as the class decision.

While we were still correcting the program and experimenting with learning
parameters we made some unsuccessful attempts to use 6 consecutive input frames
as the LUPINS main recognition program does. We decided to simplify matters by
using only one frame, consisting of the local power outputs of filters, plus an
optional set of the '4 corresponding 1 second averages. This 'single frame
input‘ is the condition reported below.

We found it necessary to normalise the input values to lie approximately between
0 and 1. otherwise the initial random weight values had too much effect.

The learning parameters are the Learning Rate (gradient multiplier). and the
Momentum Scaling Factor (step accumulator decay factor). A momentum factor of
0.5 was used for all the runs. but we experimented with the 'learning rate'
factor.
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Each class is represented by ’36 training frames. The network is usually
presented with lOOO-l'OOO sets of 1 examples during the training phase. After
this the weights which have been generated are tested on 385 unseen

(consecutive) fro-es of data containing 112 cements and with the following
distribution:

timber Type

57 Low
168 Vowel

7 l Pricative
53 Silence
1" Nasal

20 Unclassed
2 Burst

“BULB AND INTQPREI'ATION

Based on a few experimental runs for each of a few conditions we can say that
there seems to he a definite advantage in using 8 rather than '0 input values.
Performance increased from around 70: correct on test data to around 801
correct. There was no advantage in using 15 rather than 8 hidden units.

The weights were also tested on the training data and gave 683 - 810% correct
classification. Most of the errors lay in the "unclassed' class. The errors
were fairly randomly distributed between the classes.

The squared error with respect to the targets (averaged over the 36 training

tokens for ear): class) is due measure of perfomance which the learning

algorithm is designed to optimise. He found that this was a useful indicatorof
relative performance on different runs. but as expected it did not correlate
perfectly with recoytition error rate. even on the training data.

AN EXAMPLE LEARN? HEIGHT PATTERN

To illustrate the solutions found by the RHH "learning" rule. the figure shows a
set of weights for a small network. with only the It traces as inputs. and only 8
hidden units. This set of weights produces 732 correct recognition. Each

square represents a Wlfl‘lt. Joining a horizontal "wire" and a vertical wire.
The width of each square is proportional to the magnitude of a weight. Black

squares are negative weights. white squares are positive. The tour inpur
neasureaanta which enter the network along the tour horizontal wires at the

bottoa of the figure are short tens power: below 500 Hz. above 500 Hz. above 1.5

KM: and above 3.9 Hz. Bissses are shown ea weights from a notional input held

permanently at value "1“.
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An inspection of the figure is rewarded by insights of various depths. The
Silence class is picked out by columns (hidden units) Aand B. The basic idea
is that Silence is indicated by lack of energy (B). and contra-indicated by the
presence of energy (A) at any fre
The Nasal (consonant) class '
needs mainly low frequencies
(0) . or rather higher
frequencies (F) . It is
distinguished from Vowel by
the farmer. and frol Low by
the latter. Much ofthe logic
is negative. for reasons
discussed by Rumelhart at. s1.
[1]. Burst must not have much
low frequency energy (D).
Fricative must not have a

balance well towards low
frequency (E). Laws are
difficult with these inputs:
when we provide local averages
as well then a few HUB usually

  
develop a characteristic

Pattern of weights which
compare the instantaneous
values with the local
averages. Bursts really need
more contextual information.

but He can see here that
middle-to-high frequencies are
important.

CURRENT WORK

Currently we are extending the input measurements to include a few frames of

context. as used in the LUPINS main program. The current method of treating

Unclaased as a class will be changed. so that we train on frames actually

labelled by LUPINS. and He shall have a reject criterion based on the output

values of the MLP. We also have to check the performance of a system with no
hidden units. and. the use of simple parametric statistical classifiers. When are
are satisfied that we are using the right. lethods we shall train on a more
representative data set. and test using new speakers and languages.

We distinguish between two goals: to replicate the performance of an "expert

system" for speech recognition. and to do as well as possible for the same
problem. Here we haveused. as "targets" for the learning. the outputs of the
relevant LIJ'PINS program. When we canuse the same input data (it local and '0
average channels. at 6 consecutive francs) then we can test the ability of the
111.? to learn the same non-linear transfer-scion as the program iaplemente.

However, when we want to tackle the underlying speech problem we shall use as
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targets the phonetician's best labels. and we shall feel free to use as input
measurements anything which might be useful andcompatible with our methods.

It is known that for continuous-valued inputs 3: “LP needs 2 hidden layers (with
enough units) to be sure to be able to compute any classification [7]. Although
there is reason to expect the current problem to be amenable to a single layer.
we should try the more complicated system.

One of our aims is to develop tools to help us understand the weight patterns
developed automatically by the learning algorithm. and thus shed light on the
potential and limitations. The example weight pattern. in the figure. was
produced using a simple system which allows the order of the various types of
unit (rows and columns) to be changed interactively. to show orderings and
groupings. We are working on auto-ath methods for arranging the hidden units
into "meaningful" one- and two-dimensional patterns, and. also modifications of
the learning rule which encourage such order to develop.

One very exciting possibility. which is in some ways a converse of better
methods for weight interpretation. is a method for non-random assignment of
initial weights. We knowthat the learning algorithm is liable to get stuck in
local optima, and it is clear that. particularly for multi-layer systems. a good
starting point for the weights could be an enorlous help. We are working on a
nuts: for "compiling" expertise (specified in terms of the kinds of rules in

LUI’INS) into a pattern of weights in a 111.? network. The BF learning method
would then adjust the weights to "tune" performance on training data. The
potential for automatic "discovery" of qualitatively different superior
solutions would dependon the initial weight magnitudes and the extra degrees of
freedom provided.

The method of measuring the performance of a phonetic labelling system is a
significant problem in its own right. It has been suggested [8] that a phonetic
feature based scoring method be used. A 'componential' representation has
advantages for such networks in any case [3.9].

CONCLUSIONS

Although there is still much to do before we have a system worth taking

seriously as a broad class phonetic labeller. we are pleased with the
experience gained so far. The LUPINS problem and data seem suitable as the

basis for further work.

There is the possibility that this work could lead to an effective method for
constructing speech sound classifiers. and/or a methodology for applying

adaptive network techniques to various “Pattern recognition" Dl‘Obles-

Adaptive network methods have the potential to combine some of the strengths of

"knowledge based" methods and mathematically-based statistical methods. The)?
can have the richness and complexity of the former and the advantage of the

latter of being "tuned" by exposure to large amounts of example data— more than

a person can remember the detail of. He need better methods of setting up
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networks to include. in their topology and initial weights. as much existing
speech knowledge as may be useful, we need methods of finding out what is going
on as the learning progresses. and we need methods for designing "training
courses" to encourage early important and generic distintinctions.
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