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SUMMARY

This paper explores two acoustic representations, IMELDA and PLP-RPS, bath of which had given good
results in speach recognition tesis. IMELDA is examined in the comiext of some related representations
developed a1 NTT, Lincoln Laboratory and IBM. Experimental results suggest that the effectiveness of PLP-RPS
stems not from its modelling of perceprual propentics but from its approximation 10 a desirable staustical pro-
porty attained exactly by IMELDA. A combined PLP-IMELDA representation is found 1o be more effecuive
than PLP-RPS, but not clearly better than an IMELDA representation derived directly [rom a filier-bank. Some
preliminary experiments with PLP incorporating dynamic information are described.

1. Introduction

Two acoustic representations, PLP-RPS [1]1 and IMELDA[2] have recently been reporied Lo give particu-
larly good resulis in speech recognition experiments, This paper explores the properties of Lhe 1wo representa-
tions, comparcs their performance directly, and tests their potential for combination.

2. PLP

PLP — Perceptual Linear Prediction — is a representation of the short-ierm speech power specuum that
atempls to incorporate a set of perceptual features. The speech signal is first analysed by a critical-band filier-
bank. The channel energics cmerging from the filter-bank are then scaled Lo reproduce the varying semsitivity of
the car at differcnt frequencics, The cube roats of the resubting intensities are then waken o make them closer o
perceptual Joudness values.

In Linear Prediclive Coding (LPC) the autocorrelation properties of a waveform are used 1o carry out an
analysis that ampunts to Auing an all-pole madel 10 the power spectrum. In PLP, an all-pole model is fitied 10
the perceptually processed power spectrum just described. This is achieved by exploiting the Wiener-Khinchine
relationship, which states that the inverse Fourier ransform of the power specuum of a signal is ils autocorrela-
tion function. The aurocorrelation function corresponding o a perceptually transformed specuum is therefore
obtained simply by taking ils inverse Fourier ransform.

The all-pole spectral fit produced by LPC, although comesponding 10 a least-squares (it in the time
domain, docs not correspond 10 what would be obtained using a conventional least-squares error criterion on the
spectrum. Rather, it corresponds Lo a criterion in which crrars in intense parts of the spectrum are given more
weight in (he minimisation process. Since this can result in dewils in low-intensity pars of the specirum being
ignored, it rescmbles simuliancous masking in the ear and it might be expected Lo reduce sensilivity 10 low-level
interfering noise in the recognition process. Taking the cube root of the specurum before applying the fit reduces
this cffect Tt has been suggested (3] that this may have the desirable result of reducing sensitivity o harmonics
of the fundamental frequency in voiced speech sounds.

Since an » "th-order analysis can model a spectrum with at most 7 peaks, PLP can be seen as a means of
smoothing the Jog power specirum, The maximum order of the PLP analysis is set by the number of channels in
the filter-bank.

Note that if the all-pole specwal finting is not applied, but the resulis of the carlicr stages are simply
eapressed on a log scale, Lthen the cube rooting simply divides all the log encrgy valucs by three and the
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frequency sensilivity scaling simply adds constants 10 the log channel energies. As neither of these effects will
influcnce decisions in a recogniser, in the absence of spectral modelling they are inelevant.

The result of a PLP analysis is generally expressed as cepstrum coefficients. These are equivalent o the
coelficients of the cosine ransform of the log of the fitted all-pele specuum, but they can be computed directly
from the PLP predictor cocfiicients, The number of coefficienis used is normally se1 equal to the PLP analysis
order,

in recognilion tesis eisewhere[4] panicularly good resulis have been reporicd when the sets of weighted
PLP cepstrum coefficiens are compared using a Euclidean distance measure, The weighling scheme, known as
root power sums (RPS), consists simply of multiplying each cepstum coefficient by its index number: C4 by 3,
Cobyd, erc.

3. IMELDA

Lincar Discriminant Analysis (LDA} is a iechnigue used in swatistical patiern classification where an unk-
nown sample is 10 be assigned to one of a set of discrewe classes according to the values of a sct of numerical
parameters describing the sample. The parameters are assumed to have identical multivariale Gaussian distribu-
tions about the class centroids. The distribulion is completely specified by a within-class covariance matrix, W.
Under these assumptions, the probabifity of a sample's belonging 10 a given class can be computed. The sim-
plest way of doing this is to perform a linear transformation on the parameters corresponding lo the rotation and
scaling neoded 10 turn the wilhin-class distributions into uniform distributions, I.e. such that the class-conditional
probability falls off with distance from the centroid at the same rate in all directions and W becomes an identity
malrix. The log probability of belonging to a class is then linearly related to the Euclidean squared distance
from the centroid. Distances in this transformed space are called Makalanobis distances.

LDA further assumes that the class centroids are themselves distributed according 1o a different multivari-
ale Gaussian distribution, represented by a between-class covariance matrix, B. Excluding the unlikely case of B
being a simple muhiple of W, some dircctions in the parameter space will be more effective at discriminating
between classes than others. In the tansformed space in which W is an identity mawix, the set of orthogonal
axes that run from the directions that give most discrimination (o those that give least consists of the eigenvec-
wrs of the transformed B matdx. Computation can be reduced by dropping the resuling least effective
transformed paramelers; and, somewhat surprisingly, this dimensional reduction generally improves discrimina-
tion,

As carly as 1979 it had been argued($] that the distance measures in speech recognition should be based
on within-class varances in speech sounds, and that even though it might not be possible 1o define the
“‘classes™ of speech sounds — or cven decide whether discrete classes exisied — it was still possible 10 esli-
mate a lumped within<lass covariance matrix, W, of the kind used in lincar discriminant analysis. The matrix
was 10 be derived by dynamic programming non-linear time alignment of individual examples of words to their
corresponding averaged emplates or word models. The vectors deseribing the distribution about the class cen-
troids were taken 1o be the differences between the set of specural parameters in a frame of a particular example
and the aligned wmplate frame lumped over all frames in the cxample, all ezamples of the word, and all words
in the vocabulary. The iemplate frames thus played the rile of class centroids. Although each 1emplate frame
could not be considered to be a separate class, an estimate of e between-class covariance malrix could be
made by computing the covariance over the parameters in the frames of all the wmplates in the vocabulary. A
st of acoustic parametess describing the spectrum could thus be transformed o a set of parameters designed o
optimise discrimination between wmplate frames when used with unweighted Euclidean distances,

The technigue just described is paricularly atractive when different kinds of acoustic information — for
example, static and dynamic speciral information -— are 10 be used in combination. In such cases LDA can pro-
vide an oplimal combination, where otherwise empirical methods must be used(6). Indeed, the technique was
first used w derive an cffective representation for speech recognition from the two scparate  spectral
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represcntations gencrated by an awdilory medel[7].

The LDA mcthod was next used with an FTT-derived mel-scale filier-bank [2]). Since the method can
integrate disparate types of information, and since it uses the percepally motivated mel frequency scale, the
resulting representations were called IMELDA — Inegrated Mel-scale representation with LDA. A version using
only static spectral information was called IMELDA-I, and a version incorporating dynamic spectral informa-
tion IMELDA.-2.

Although both speaker-dependent and speaker-independent experiments were carried out, the IMELDA
transform was generally computed using templates averaged over all speakers in the set vsed. Computing an
IMELDA transform separately for each speaker showed only a slight advantage in speaker-dependent tests, and
it would not in any case be practicable in many applications.

To give the acoustic representation produced by the transform some immunity o signal degradations, the
following proceduwre was adopied. Three copies were made of the speech used to derive the rransform. The first
copy was left undegraded and was used 10 produce the 1emplales and the B matrix. The second copy had white
noise added to give a 15dB SNR, and the third copy was passed through a pre-emphasis filier 10 produce a 6dB
per octave spectral tle All three copies were then time aligned 10 the 1emplates 1o compule a single W mairix,
Because of fears that commesponding speech sounds might not be reliably aligned with the degraded copies, Lhe
alignment path determined from the undegraded copy was used throughout. Experiments showed that this pro-
cess greatly improved recognition performance with degraded speech while only slightly reducing performance
with undegraded speech. Morcover, subscquent experiments showed that the method conferred resistance 1o
other degradations — for example thase encountered on the telephone and in a helicopter — though admiyedly
not quite so great as is obtained by using the specific degradations 10 be encountered in recognition in the
derivation of the IMELDA ransform.

4. Relationship of IMELDA 1o Other Acoustic Representations

In speech recognition systems incorporating dynamic programming time alignment or Hidden Markov
Modcls (HMM's) with Vilerbi decoding, the spoctral distances used are implicidy assumed 10 correspond (0
class-conditional log probabilities, If Euclidean distances are used, the acoustic parameters should have class-
conditional covariance propertics comresponding to an identity mawrix. We have seen in the previous section that
IMELDA provides this property under the (probably unreasonable) assumption that the acoustic paramelers have
the same class-conditional distributions in all specch sounds.

On the ather hand, the log energies gencrated by a mel-scale filter-bank do not have the desired properties
because adjacent channcls are highly corrclaled. The class-conditional correlation can be gready reduced by
applying a cosine wransfonm 1o give a mel-cepstrum representation. However, the class-conditional variances of
mel-cepstrum coefficients are not uniform but rather decrease with increasing quefrency. Yarious semi-empirical
schemes have been proposed for scaling up the variances of the higher quefrency coefficients. In panicular,
Tohkura[8] at NTT proposed scaling o make the toral variance of cepsoum coefficients uniform. While this
procedure has been claimed o provide Mahalanobis diswances, such distances, as we have seen; require the
class-conditional variances 1o be uniform, Data presented elsewhere [2)(9] show that the Tohkura weighting
scheme gives 100 much weight 10 higher quefrency cocfficients relative to what would be needed for
Mahalanobis diswances.

Continuous-parameter HMM's [10) offer the possibility of converting the ¢lass-conditicnal covariance
matrix i an identity matrix scparaicly for each stale in cach model. This avoids the oversimplification in
IMELDA that all staes (or wemplate frames) have the same covariance mawix. However, such an approach is
rarcly used in praciice because of the high computational cost in the recognition process and the enormous
amount of waining material necded for cach word in the vocabulary. Instzad, the individual siate covariance

' matrices are ofien assumed to be diagonal, so that the state-specific slatistics are specibed ¢nurely by varances,
* Funthcrmore, workers al Lincoln Laboratory [11] have reporied better results when these variances are poeled
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over all states 1o produce what they call grand variances.

Grand variances thus share IMELDA's assumption of identicat state-specific probability distributions and
add the funther assumption that the pooled covariance matrices are diagonal. Pooling variances rather than
covariances is well motivated only for acoustic parameters that have linle correlaion between them. Also, since
the method simply results in a scaling of the inpul acoustic parameters, computational limits on the number of
parameters that can be used in the recognition process also represent limits on the number of acoustic parame-
ters that can be introduced. It may have been a combination of these two factors that led the Lincoln Lab work-
crs to confine their experiments 10 static speciral features.

Workers at 1BM [12] used a linear wansformation on the output of a perceptually based filler-bank that is
extremely close 10 IMELDA. They took as their representation the top few eigenvectors of W™'T, where T is
the 1al covariance matrin. LDA gives the eigenveciors of W'B, but since T = B + W, the wwo sets of eigen-
veotors are identical, even though the eigenvalues are of course different. Dynamic features were incorporated in
the representation by concalenating log power spectra from adjacent 10ms frames. This is eguivalent 10
differencing adjacent frames over lime, since the two are related by a linear transformation. However, dynamic
infarmation is known to be more cffective when derived from longer temporal separations, as i has been in the
IMELDA work. This and the absence of the application of signal degradations from the IBM work constitute
the two major differences {rom the IMELDA work.’

The IBM work supports our experience that dropping the bottom few discriminant veciors helps recogni-
tion performance. However, the improvement is modest in scale compared with that obwained from the first stage
of LDA, namely the ransformation of W inwo an identity matrix.

5. Implementation, Verification and Optimisation of PLP

All experimenis reponed in this paper were carried out on a nine-speaker digit dawabase with a quasi-
isolated-word recognition sysiem, both described elsewhere [71. To assess robustness under degradations, recog-
nition performance was measured with speech 10 which sieady while noise had been added to give a 15dB SNR
and with speech to which a 6 dbfociave 1lt had been applied as well as with undegraded speech. The averaged
iemplales were, however, always derived from undegraded examples.

The first sct of experiments sought to detcrmine the optimal analysis arder with a representation consisting
of static-spectrum RPS-weighied PLP coefficients. As shown in Figure 1, the overall oplimum recognition per-
formance was obtained for an order around fifteen. This is inconsistent with results published by Hermansky [4]
indicating an oplimal order in speaker-dependent experiments of eight and in cross-speaker experiments of five,
though it is consistcnt with more recent work by Hanson and Applebaum([13). The discrepancy may be partly
cxplained by our use of averaged emplates, which, particularly in our speaker-independent tests where the
averaging was over cight spcakers, causes a smoathing of the spectrum, This may remove any advantage that
low-order PLP provides in smoothing the spectrum. Also, the advantage we find for higher-order analyses is
most marked for degraded speech, while Hermansky's tests were exclusively with undegraded speech.

Whatever the reason for our finding that higher-order analyses are prefcrable, it has an impact on the
inerprewation of the apparent effectivencss of PLP. It has been suggestcd[14] that humans may analyse speech
inlo two major resonances labelled F1 and £2°, with F2°, the effective sccond formant, corresponding Lo the
resonance of the front cavity of the voeal tract. This front cavity is sometimes associated with the second for- -
mant and somctimes with the third; and speakers, the argument goes, may be able 1o adjust it so as 1o préduce
the same F 2" for the same specch sound despite differences in the size of their vocal vacts. Fifth-order PLP has
been shown [15] 1o produce something close o an F 1-F2 analysis. This scemed (0 provide a panicularly
¢legant cxplanation of the cffectiveness of fifth-order PLP in the cross-speaker experiments. Our resulis and
those of Hanson and Applcbaum favouring much higher order analyses where a full sct of formants can he
observed are inconsisient with this caplanation,
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Figure 1 Perceniage error rawes for speaker-dependent (SD) and speaker-independent (31} quasi-isolated

word recognition experiments using the PLP-RPS acoustic representation, Undegraded (Q), moise

degraded (N) and with spectral tilt (T).

We next sought 10 verify the advantage of RPS weighting: and herc are results are entirely consistent with
Hermansky's. Table 1 shows that while unweighted PLP is no betier than an unweighted mel-cepstrum represen-
wation, PLP with RPS weighiing is much betier, It is also much betier than an eguivalemly weighted mel-
cepstrum representation. We will return 1o the question of why RPS weighting is so effective with PLP after
first discussing results with IMELDA-1 and a combination of PLP and IMELDA.

] Speaker Dependent Speaker Independent
Representation # Coefls. 9 N T a N T
plp-cepstum 12 0.59 29.82 69.29 57 47.48 75.89
quef, wid. plpcep 12 0.07 143 0.07 1.1 482 4.08
mel-cepstrum 12 037 29.82 68.47 in 4392 78.49
quef. wid. mel-cep. 12 0.00 26.34 2374 3186 39.69 66.17
IMELDA-1 12 0.00 2.00 0.00 L1t 393 200
PLP-IMELDA 12 0.07 1.26 0.07 0.89 430 2.08

Table 1 Comparison of crror rates for weighted and unweighted mel-cepsirum and PLP acouslic representalions,
and an IMELDA-] represenation derived from the cutput of the mel-scale filterbank.

6. Tests with IMELDA and PLP-IMELDA

The derivation of an IMELDA representation from the log channcl energics of a mel-scale filter-bank
described in Section 3 can cqually well be applied 10 a st of PLP cepstrum coefficients. We call such a
representation PLP-IMELDA, and Figure 2 compares the performance obtained with this representation and the
PLP-RP3S representation. The differences are small, but PLP-IMELDA has proved consistently better than PLP-
RPS. However, it is not clear that the PLP-IMELDA represcntation is any better than IMELDA-] derived
directly from the mel-scale filter-bank (Table 1). The speaker-dependent PLP-IMELDA resuls in noise may

show the hoped-for advantage over the direct IMELDA, but it is not maintained in ihe speaker-independent
results in noise. :

7. Interpretation of PLP-RPS Results

It is sunking in Table 1 that while unweighied PLP cepstrum coefficients are no more effective than
unweighted mel-cepstrum coefficients, RPS-weighted PLP cepstrum coefficicnts are much more effective than
cquivalently weighted mel-cepsirum coclficients. Indced, they are almost as effective as the PLP-IMELDA
representation. We need w ask why RPS weighting seems so well suited 10 the PLP cepstrum.
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Figure 2 Percentage ermor rales {or spesker-dependent t and speaker-independent quai-isolated word
recognidon cxperiments using the PLP.RPS and PLP-IMELDA acousiic representations,

+ Speaker-dependent caperiments with undegrmded and spectral tilt speech dow hove slmost zoo o nile.

Weighting according o quefrency — RPS weighting — is known 1o give 0o much weight to the higher
quefrency coefficicnts|8][9]. That is, the class-conditional variances scaled vp by this weighting scheme are 1o
large. For this reason, weighting schemes of this kind limit the weighting beyond the first few coefficicnts. The
hagher coefficicots are sensitive primarily to spectral fine structure. Since, as we have seen, PLP has the effect
of smoothing the spectrum, we might ¢xpect that the variance of the higher quefrency cepsurum coefficients
would be rcduccd. Mcasurements on our dalabase confirm this expectation. Indeed, as Figure 3 shows, the |
class-conditional variances of RPS-wceighied cepstrum coefficients 1o be almost constant for 12°th-order PLP. By
contrast, cquivalently weighted mel-cepsurum coclficients show

steeply rising variances, while IMELDA cocfficicnts are the most accurately constant, as one would expect since
it is part of their definition. Moreover, IMELDA cocfficients are accurately uncorrclated.

it appears what the cffectiveness of a PLP-RPS rcprescatation siems (rom the fonwitous combination of the
low-pass lifiering imposed by PLP and the high-pass lificring of RPS weighting which balance each other o
give almost constant class-conditional variances.
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8. Tests with Dynamic Spectral Information

Scclion 3 pointed out that dynamic spectral information ¢an be incorporated in an IMELDA representa-
ion. Recognition tests with dynamic PLP parametcrs have also been reported{16)f13).

o Given the good performance of PLP-

— quef. wid. mel. cepstrum IMELDA, we therefore investigated a PLP-
.... PLP-RPS IMELDA representation including  dynamic
- IMELDA-1 cocfficicnis. The dynamic coefficienis were
obtained from linear regression over seven
consecutive 6.4 ms frames.

Figure 4 shows the performance of the PLP-
IMELDA-2 represeniation to be consisiently
beuer than the PLP-IMELDA-1 representa-
tion. However, it appears o offer no clear
advantage over a *‘conventional”* IMELDA-2,
_____ SRR EIR though the crror rates in both cases are 50 tow

12

1Y)

7

L]

Weighted Wilhin--class Varionce

R e that it it is questionable whether the perfor-

=>1 " ; " = —— mance differences are real. We are about 10
z 2 c:’:s.‘,.jn Cc-';ﬁic;;m e oo begin lests wil:h all the rcpmscmal_iuns on a
larger, more difficult database, which should

Figure 3 Withincluss variances ©of the frst twelve cepstrum allow definite conclusions to be drawn.

cocfficients derived from the mel-scale fillerbank and 2 12 order Hanson and Applebaum[13] have recom-
PLP analysis, weighed by their squared quefrency index, and  mended low-order PLP  for  dynamic
within-class variances of the first twelve IMELDA coefficients  coefficients. Our preliminary resolis with

derived from the mel-scale filierbank mixed-order static and dynamic representa-
tions appear consistent with these recommen-
dations.

9. Conclusions

1. An explanation has been offered for the effectivencss of the PLP-RPS representation. It appears not 1o be
related 10 F 1-F 2° modelling or other perceptual phenomena but to an accidental statistical property.

2. This siatistical propeny is optimised in IMELDA, and PLP-IMELDA gives beuer performance than PLP-
RPS whea only swatic speciral parametcers are used, though not clearly beter than a direct IMELDA-1, which
is computationally simpler,

3. Itis not yeu clear if PLP offers any advanmages when incorporating dynamic information. Results 10 seile
this issue will be announced shonly.
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