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SUMMARY

This paper explores two acoustic representation. lMELDA and PLP-RPS. both of which had given good

results in speech recognition tests. llvELDA is examined in the context of some related representations

developed at NTI'. Lincoln Laboratory and IBM. Experimental results suggest that the effectiveness of PLP-RPS

stems not from its modelling of perceptual properties but from its approximation to a desirable statistical pro-

peny attained exactly by IMELDA. A combined PLP-IMELDA representation is found to be more effective

than PLP-RPS. but notclearly better than an IMELDA representation derived directly from a filter-bank. Some

preliminary experiments with PLP incorporating dynamic inforrnalion are described.

1. Introduction

Two acoustic representations. PLP-RPS [l] and lMELDAIZ] have recently been reponed to give particu-

larly good results in speech recognition experiments. This paper explores the properties of the two representa-

tions. compares their performance directly. and 1:55 their potential for combination.

2. PL?

PLP — Perceptual Linear Prediction — '5 a representation of the short-term speech power spectrum that

attempts to incorporate a set of perceptual features. The speech signal is first analysed by a critical-band filter-

bank. The channel energies emerging from the filter-bank are then sealed to reproduce the varying sensitivity of

the car at different frequencies. The cube roots of the resulting intensities are then taken to make thorn closer to

perceptual loudness values.

In Linear Predictive Coding (LPC) the autocorrclation properties of a wavefonn are used to carry out an

analysis that amounts to fitting an all-pole model to the power spectrum. in PLP, an all-pole model is fitted to

the perceptually processed power spectrum just described. This is achieved by exploiting the Wiener-Khinchine

relationship. which states that the inverse Fourier transform of the power spectrum of a signal is its autocormla-

tion function. The autocorrclation function corresponding to a perceptually transformed spectrum is therefore

obtained simply by taking its inverse Fourier transform. '

The all-pole spectral fit produced by LPC. although corresponding to a least-squares fit in the time

domain, does not correspond to what would be obtained using a conventional least-squares error criterion on the

spectrum. Rather. it corresponds to a criterion in which errors in intense pans of the spectrum are given more

weight in the minimisation process. Since this can result in details in low-intensity pans of the spectrum being

ignored, it resembles simultaneous masking in the ear and it might be expected to reduce sensitivity to low-lcvcl

interfering noise in the recognition process. Taking the cube root of the spectrum before applying the fit reduces

this effect It has been suggested (3] that this may have the desirable result of reducing sensitivity to harmonics

of the fundamental frequency in voiced speech sounds.

Since an n ‘th-order analysis can model a spectrum with at most n peaks. PLP can be seen as a means of

smoothing the log powcr spectrum, The maximum order of the PLP analysis is sct by the number of channels in

the filter-bank.

Note that if the all-pole spectral fitting is not applied. but the results of the earlier stages are simply

expressed on a log scale. then the cube rooting simply divides all the log energy values by three and the
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frequency sensitivity scaling simply adds constaan to tlte log channel energies. As neither of these cfl'cCts will

infiucme decisions in a rocogniser. in the absence of spectral modelling they are irrelevant.

The result of a PLP analysis is generally expressed as cepstrtun coefficients, These are equivalent to the

coefficients of the cosine transform of the log of the fitted all-pole spectrum. but they can be computed directly

from the PLP predictor coefficients. The number of coefficients used is normally set equal to the PLP analysis

order.

in recognition tests elsewherc[4] particularly good results have been reported when the sets of weighted

PLP ccpstrum coeffician are compared using a Euclidean distance measure. The weighting scheme. known as

root [tower sum: (RPS). consists simply of multiplying each cepstrum coefficient by its index number. C3 by 3.

C . by 4. etc.

3. [MELDA

Linear Discriminant Analysis (LDA) is a technique used in statistical pattern classification where an unk-

nown sample is to be assigned to one of a set of discrete classes according to the values of a set of numerical

parameters describing the sample. The parameters are assumed to have identical multivariate Gaussian distribu-

tions about the class centroids, The disu-ibution is completely specified by a within—class covariance matrix. W.

Under these assumptions. the probability of a sample‘s belonging to a given class can be computed, Tire sim-

plest way of doing this is to perform a linear transformation on the parameters corresponding to the rotation and

scaling needed to turn the within-class distributions into uniform distributions, Le. such that the class—conditional

probability falls off with distance from the centroid at the same rate in all directions and W becomes an identity

matrix. The log probability of belonging to a class is then linearly related to the Euclidean squared distance

from the centroid. Distances in this u-ansformcd space are called Mahalahobt's distances.

LDA further assumes tlral the class centroids are themselves distributed according to a different multivari-

ate Gaussian distribution. representcd by a between-class covariance matrix, B. Excluding the unlikely case of B

being a simple multiple of W. some directions in the parameter space will be more effective at discriminating

tetwcen classes than others. In the trurtsfomred space in which W is an identity mau'ix. the set of orthogonal

axes that run from the directions that give most discrimination to those that give least consists of the eigenvec-

tors of the uansfonired B man-ix. Computation can be reduced by dropping the resulting least effective

transformed parameters; and, somewhat surprisingly. this dimensional reduction generally improves discrimina-

uon.

As early as 1979 it had been argucdlil that the distance measures in speech recognition should be based

on withinclass variances in speech sounds. and that eten though it might not be possible to define the

"classes" of speech sounds -— or even decide whether discrete classes existed — it was still possible to esti-

mate a lumped within‘class covariance matrix. W. of the kind used in linear discriminant analysis. The mauix

was to be derived by dynamic programming non-linear time alignment of individual examples of worfi to their

corresponding averaged Icmplalcs or word models. The vectors describing the disuibution about the class cen-

uoids were taken to be the differences between the set of spectral parameters in a frame ofa particqu example

and the aligned template frame lumped over all frames in the example. all examples of the word, and all words

in the vocabulary. The template frames thus played the role of class centroids. Although each template frame

could not be considered to he a separate class. an estimate of the between-class covariance matrix could he

made by computing the covariance over the parameters in the frames of all the templates in the vocabulary. A

set of acoustic parameters describing the spectrum could thus be transformed to a set of parameters designed to

optimise discrimination between template frames when used with unweighted Euclidean distances.

The technique just descrith is particularly attractive when different kinds of acoustic information — for

example. static and dynamic spectral information — are to be usal in combination. In such cases LDA can pro-

vidc an optimal combination. where otherwise empirical methods must be uscdlol. Indeed, the technique was

frrst uscd to derive an effective representation for speech recognition from the two separate spectral
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representations generated by anauditory modcl[7].

The LDA method was next used with an FIT-derived meI-scale filter-hank 12]. Since the method can

integrate disparate types of information, and since it uses the perceputally motivated me! frequency scale, the
resulting representations were called IMELDA — Integrated Mel~scale representation with LDA. A version using

only static spectral information was called [MELDA-l, and a version incorporating dynamic spectral infonna-
tion lMELDA-Z.

Although both speaker-dependent and speaker-independent experiments were canied out. the IMIELDA
transform was generally computed using templates averaged over all speakers in the set used. Computing an
IMELDA transform separately for each speaker showed only a slight advantage in speakerdepcndent tests. and
it would not in any case be practicable in many applications.

To give the acoustic representation produced by the u-ansfon-n some immunity to sigtal degradations. the
following procedure was adopted. Three copies were made of the speech used to derive the transform. The first

copy was left undcgraded and was used to produce the templates and the 3 matrix The second copy had white

noise added to give a lSdB SNR. and the third copy was passed through a pro-emphasis filter to produce a 6dB
per Octave specu-al tilt. All three copies were then time aligned to the templates to compute a single W mauix.

Because of fears that corresponding speech sounds might not be reliably aligned with the degraded copies, the

alignment path determined from the undcgraded copy was used throughout. Experiments showed that this pro-
cess greatly improved recognition performance with degraded speech while only slightly reducing performance
with undegmdcd speech. Moreover. subsequent experiments showed that the method conferred resistance to
other degradations — for example those encountered on the telephone and in a helicopter — though admittedly

not quite so great as is obtained by using the specific degradations to be encountered in recognition in the
derivation of the IMELDA u-ansforrn.

4. Relationship of IMELDA lo Other Acoustic Reprsenlations

in speech recognition systems incorporating dynamic programming time alignment or Hidden Markov

Models (HMM's) with Vitcrbi decoding. the spectral distances used are implicitly assumed to correspond to

class-conditional log probabilities. l.f Euclidean distances are used, the acoustic parameters should have class-
conditional covariance properties corresponding to an identity man-ix. We have seen in the previous section that
lMELDA provides this property under the (probably unreasonable) assumption that the acoustic parameters have

the same class-conditional disu'ibutions in all speech sounds.

0n the other hand. the log energies gencrated by amoi-scale filter-bank do not have the desired propcnics

because adjacent channels are highly correlated. The chssconditional correlation can be greatly reduced by

applying a cosine transform to give a mcl-eepstrum representation. However. the class—conditional varianccs of

mcl-cepstrum coefficients are not uniform but rather decrease with increasing qucfrency. Various semi—empirical

schemes have beenproposed for scaling up the variances of the higher quefrcncy coefficients. In particular.
Tohkura[8] at NTI' proposed scaling to make the total variance of cepstrum coefficients uniform. While this

procedure has been claimed to provide Mahalanobis distances. such distances. as we have seen: require the

class-conditional variances to be uniform. Data presented elsewhere [2][9] show that the Tohkura weighting

scheme gives too much weight to higher quefrency coeffician relative to what would be needed for

Mahaianobis distances.

Continuous-parameter HMM's [10] offer the possibility of convening the class—conditional covariance
matrix to an identity matrix separately for each state in each model. This avoids the oversirnplification in
lMELDA that all states (or template frames) have the same covariance mauix. However. such an approach is
rarely used in practice because of the high computational cost in the recognitiou process and the enormous
amount of training material needed for each word in the vocabulary. Instead. the individual state covariance
matrices are often assumcd to he diagonal. so that the state-specific statistics are specified entirely by variances
Further-more. workers at Lincoln Laboratory [11] have reported better results when these variances are pooled
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over all states to produce what they call grand variances.

Grand variances thus share IMELDA's assumption of identical state-specific probability disut'butions and
add the funher assumption tltat the pooled covariance matrices are diagonal. Pooling variances rather than

covariances is well motivated only for acoustic parameters that have little correlation between them. Also. since

the method simply results in a sealing of tlte input acoustic parameters. computational limits on the number of

parameters that can be used in the recognition process also represent limits on the number of acoustic parame-
ters that can be inuoduced. It may have been a combination of these two factors that led the Lincoln Lab work—

ers to confine their experiments to static spectral feautres.

Workers at IBM [12] used a linear uansfortrtalion on the output of a perceptually based filter—bank that is
extremely close to WELDA. They took as their representation the top few eigenvectors of W“T. where T is

the total covariance matrix. LDA gives the eigenvectors of W’B. bit! since T = B + W. the two sets of eigen-
vectors are identical. even though the eigenvalues are of course different. Dynamic features were incorporated in

the representation by concatenating log power spectra from adjacent wins frames. This is equivalent to

differencing adjacent frames Over time. since the two are related by a linear transformation. However. dynamic

information is known to be more effective when derived from longer temporal separations. as it has been in the

IMELDA work. This and the absence of the application of signal degradations from the IBM work constihtte
the two major differences from the IMELDA work.‘

The IBM work supports our experience that dropping the bottom few discriminant vectors helps recogni-

tion performance. However. the improvement is modest in scale compared with that obtained from the first stage
of LDA. namely the transformation of W into an identity matrix.

5. Implementation. Verification and Optimisation of PLP

All experiments rcponed in this paper were carried out on a nine-speaker digit database with a quasi-
isolated-word recognition system. both describedelsewhere [7]. To assess robustness under degradations, recog-
nition perfomtttnce was measured with speech to which steady white noise had been added to give a lSdB SNR
and with speech to which a 6 db/octave tilt had been applied as well as withundcgraded speech. The averaged
templates were. however, always derived from undegraded examples.

The first setof experiments sought to determine the optimal analysis order with arepresentation consisting
of static-spectrum RPS-weighted PLP coefficients. As shown in Figure l. the overall optimum recognition per<
formanee was obtained for an order around fifteen, This is inconsth with results published by Hermansky [4]
indicating an optimal order in speaker-dependent experiments of eight and in cross-speaker experiments of five,

though it is consistent with more recent work by Hanson and Applebaum[l3]. The discrepancy may be panJy
explained by our use ofaveraged templates. which. particularly in our speaker-independent tissts where the
avetaging was over eight speakers. causes a smoothing of the spectrum. This may remove any advantage that

low-order PLP provides in smoothing the spectrum. Also. the advantage we find for higher-order analyses is
most marked for degraded speech. while Hermansky's tests were exclusively with undegradcd speech.

Whatever the reason for our finding that higher-order analyses are preferable. it has an impact on the
interpretation of the apparent effectiveness of PLP. It has been suggestedfldl that humans may analyse speech
into two major resonances labelled Fl and F2'. with FZ’. the effective second formant. corresponding to the
resonance of the front cavity of the vocal tract. This front cavity is sometimes associated with the second for-
mant and sometimes with the third: and speakers. the argument goes. may be able to adjust it so as to produce

the same F2' for the same speech sound despite differences in the size of their vocal tracts. Fifth-order PLP has

been shown [15] to produce something close to art Fl<F2’ analysis. This seemed to provide a panicularly
elegant explanation of the effectiveness of ftfth-order PLP in the crossAspeakcr experiments. Our results and
those of Hanson and Applehaum favouring much higher order analyses where a full set of formants can be
observed are inconsistent with this explanation.
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Figure 1 Percentage error rates for spaukuAcp-utdcnt (SD) and speaks-independent (st) quasi-isolated
word recognition experiments using the PU-RPS acoustic representation. Undegraded (Q). noise

dewlded (N) and with spectral tth (T).

We next sought to verify the advantage of RPS weighting: and here are results are entirely consistent with
Hermanslty's. Table I shows that while unweighted PLP is no better titan an unweighted mcl-cepstrum represen-
tation. PLP with RPS weighting is much better. it is also much better titan an equivalently weighted mel-
oepsrrum representation. We will return to the question of why RPS weighting is so effective with PLP after
first discussing results with lMELDA-l and a combination of PL? and 1MELDA.
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. spew Dependent 1RC mm,“ ,, Cows—
-|E--I-i““
plp-cepstrurn 12 75.89
que!‘ wtd. plp—cep 12
mel-cepstrum 12

quef. wtdt ntel—oep. 12
lMELDA-l l2
PLP-IMELDA l 2

Table 1 Comparison of error rates for weighted and unweighted meleepstrutn and PLP acoustic representations,
and an IMELDA-l representation derived from the output of the meI-scale filterbartk.

6. Tests with lMELDA and PLP-IMELDA

The derivation of an lMELDA representation from the log channel energies of a mel-scale filter-bank
described in Section 3 can equally well be applied to a set of PLP cepstrum coefficients. We call such a
representation PLP-lMELDA. and Figure 2 compares the performance obtained with this representation and the
PLP-RPS representation. The differencos are small. but PLP-IMELDA has pmved consistently better than PLP-
RPS. However. it is not clear tint the PLP-lMELDA representation is any better than lM‘ELDA-l derived
directly from the mel-scale filter-bank (Table l). The speaker—dependent PLP-lMELDA results in noise may
show the hoped—for advantage over the direct lMELDA, but it is not maintained in the speaker-independent
results in noise. '

7. Interpretation or I’LP-RPS Results
1: is striking in Table 1 that while unweighted PLP upstrurn coefficiean are no more effective than

unweighted mel-ccpstrum coefficients. RPS-weighted PLP ceps'trurn coeffician are much more effective than
cquivalcfllly weighted mel-eepstrum coefficients. indeed. they are almost as effective as the PLP-IMELDA
representation, We need to ask why RPS weighting seems so well suited to the l’lJ> cepstrum.
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Weighting according to quefrcncy — RPS weighting — is known In give too much weight to the higher

qucfrency coefficianslS][9]. That is. the class-conditional variances scaled up bythis weighting scheme are too
large. For this reason. weighting schemes of this kind limit the weighting beyond the first few coefficients. The
higher coefficients are sensitive primarily to spectral fine stmcture. Since. as we have seen. PLP has the effect
of smoothing the spectrum. we might expect that the variance of the higher quefrency cepstrum coefficients

would be reduced Measurements on our database confirm this expectation. Indeed. as Figure 3 shows. the I

class-conditional variances of RPS-weighted ccperum coefficients to be almost constant for lZ'th-order PLP. By
contrast. equivalently weighted melupswm coefficients show

steeply rising variances. while IMELDA coeffician are the most accurately constant. as one would expect since
it is part of their definition. Moreover. lMELDA coefficients are accurately uncorrelated.

It appears that the effectiveness of a PLP-RPS representation stems from the fortuitous combination of the
low-pass liftering imposed by PL? and Ute high-pass filtering of RPS weighting which balance each other to
give almost constant class-conditional variances.
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8. Tests with Dynamic Spectral Information

Section 3 pointed out that dynamic spectral information can be incorporated in an IMELDA representa-

tion. Recognition mm with dynamic PLP parameters have also been reportedilélilzl.
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Flgure 3 Within-class variances or the am twelve upswm
coefficients derived from the Incl-scale filterhank and . 12" order
m analysis. weighted by their squared quefrency index. and
within-class unmet of the first twelve IMELDA coefficient:
derived From rh: Incl-scale filterbank.

9. Conclusions

Given the good performance of PLP—
lMELDA, we therefore investigated 5 PL?-
IMELDA representation including dynamic
coefficients. The dynamic coefficients were

obtained from linear regression over seven

consecutive 6.4 ms frames.

Figure 4 shows the performance of the PLP-
lNELDA-Z representation to be cons'olcntly
beuer titan the PLP-lMELDA-l representa-

tion, However, it appears to offer no clear
advantage over a "conventional" IMELDAJ.
though the error rates in both cases are so low
that it it is questionable whether the perfor-
mance differences are real. We are about to
begin tests with all the representations on a
larger, more difficult database, which should

allow definite conclusions to be drawn.

Hanson and Applehaum[13] have recom-

mended low—order PLP for dynamic
coefficients. Our preliminary results with
mixed-order static and dynamic representa-
Lions appear consistent with these recommen-
dations.

I. An explanation has been offend for the effectiveness of the PLP-RPS representation. it appears not to be

related to F 1—F2’ modelling or other perceptual phenomena but to an accidental statistical property.

2. This statistical property is optimised in lM‘ELDA, and PLP-lMELDA gives better performance than PLP-

RPS when only static spectral parametch are used, though not clearly better than a direct lMELDA-l, which

is computationally simpler.

3. it is not yet clear it PLP offers any advantages when incorporating dynamic information. Results to Scull:

this issue will be announced shortly.
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