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1 . INTRODUCTION

Boundary integral equation methods are now fairly well known as a tool for
calculating outdoor sound propagation over noise barriers. Their advantage is
in flexibility, in that barriers of arbitrary cross-section and surface
acoustics properties can be accurately represented. Their disadvantage is
computational expense which can be considerable for large barriers and high
frequency calculations, and very considerable if a full three-dimensional
calculation is made.

In this paper. two types of methods are presented to reduce the computational
expense. The first one consists of solving the integral equation by a
collocation method and taking advantage of the particular shape of the matrix.
The second consists of solving the integral equation by using a Kirchhoff
approximation and a least-square minimisation method.

These methods are both applied to the case of a thin screen situated on an
absorbing, flat ground. For simplicity, only the two-dimensional problem is
considered.

2. SOLUTION BV A COLLOCATION METHOD

The geometry of the problem is shown in Figure 1. A thin screen of height H is
located on a plane characterised by a specific surface admittance 6:. It is

assumed that the barrier surface is also locally reacting. 616:.) denotes the

specific admittance at FI=(x-,y_) on each side i" of 1‘.

Let ?°=(x°.y°) denote the source position and p(F), the acoustic pressure at

F=(x.y). Let 65.70) be the solution of the problem in the absence of the
screen ; 6 denotes the acoustic pressureemitted above the plane of admittance

9: with no barrier present. Then, the pressure NF) can be written as [1] :

X
a

unsafe-I BG .. ~ ~ ~ .. ~r {a—(r_.r) (9'-n‘)(r')+ 1ka(r_,r) [fl‘n’+B’p'l(r.)} ay_ (1)
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on each side 1".

Equation (1) expresses p at an arbitrary point in the region of propagation

and can be used to compute the pressure throughout the region once p- are

known. To determine pi. a pair of coupled integral equations is obtained from

(1) by letting F approach I' and using the boundary conditions and the

where F. lies on 1' (Le. x.=o), k is the wevanumber. pi denotes the value of p ‘

properties of the layer potentials [2.3] on I‘. For 3: on r,

(p'+n')('r')
2

and :

= (xi-'50) - 1k Ir e('r'_,F) [B‘p‘+B'D'](F_) dy_ ' (2)

a'c(‘r".’F) _ ~
Ir —— [o‘-n Kr.) «iv, (3)1k [3‘ ' e- '1(') 36F ~) 11— — - = — r.r - m

2 p p r ax ° 3x 9x'x'—¢0

where F'=(x’.y_).

Equations (2) and (3) are now solved by a simple boundary element method. For

brevity, we consider Just the s1mpler case when the admittance is the- same on

each side of the barrier. Le. $°=fl'=b. Equations (2) end (3) are then

decoupled. The unknowns are [p] = (p'-p') and 6 = (p‘+p')/2.
To obtain the solution, 1' is divided into N elements l‘, of length h=H/N, i.e :

I" = How.) : (J-i)h€yas:]h), and F‘=(0,y,) is the midpoint of F}.

A simple collocation method is applied. assuming that B and p2 are

approximately constant on each element and setting F51, forJ=1(1)N in

equations (2) and (3). The'unknowns 3(7 ) and [D](FJ) are the solutions of two

systems of N equations which can be wri ten :

N

3(a) : G(F,.'F°) - 2 ik 2 5" Mr.) D(r_) (4)
m=i

and

am” ‘ ) Nik ~ .. rj'ro ..
- 2— 9(FJ)[D](I',) =T - E t“ [nJ(r_) (5)

where :
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I‘m/2 ~ _ Iflv2 3266:3311)
s := G(r .r d 6 no t := lim d1' y-h/z I -) y- “a 1- x._, y_-h/2 axax' ’-

 

(7)

The computation of 6 and its derivatives is discussed in [4].

Once (4) end (5) have beensolved. p elsewhere in the region of propagation
can be calculated by approximating (1) by the composite midpoint rule to give:

pm a «(6,5) - 2
- 3:1 3xa

36(r‘,r)

 

MG") + 2 ik a(F,.F) 96,) 3G,) (a)

The calculations of the integrals s’_ and t‘. ere greatly simplified by noting
than the Green’s function 6 can be written as the sum of a direct and
reflected wave . i.e. :

6650) = cm(F,F°) + em(F.F°) where em(F.l-'a) = -1 ug‘ukIr-rolm
and that the value of er.f(F.Fo) depends only on (x—xo) and (y+y°).

Writing a _= s‘_+ s;_, where s‘ and s;_ are defined by (0) with 0 replaced by
0.' and . ,respectively. and using the same notations for t . it follows
that : r. ‘-

d .6 d .d -sJ.‘__" - s,_ end t‘.‘._.‘ - t’_ for J and m -1(i)N—1 (9)
and : 5:."-_' = s;- and t;.'.__‘ = ti. for J=1(1)N-l and m=2(i)N-1. (10)
Then S‘E [s:_] and T‘s [t‘_] are Toeplitz matrices and 3'; [s'_] and T’s [t;_]
are Henkel matrices. The whole matrices can then be obtained once a single row
and column of each has been explicitly calculated.

The usual main costs of the boundary element method are a cost proportional to
N‘ in evaluating the coefficient matrices for the linear equations (4) and (5)
- this is reduced to a cost proportional to N by the use of equations (9) and
(10) - and a cost proportional to N’ (but with a much lower constant of
proportionality) for solution of the linear equations by e.g. Gaussian
elimination.
lhis latter cost may also be reduced very substantially by use of the pattern
of the matrices s and T. For example. in the simplest case, when B is constant
on F. the coefficient matrices of the equations (4) and (5) are 1+21ka(s“+s')
and —ikBI/2¢T‘+T' where I is the order N identity matrix. Each matrix is a sum
of a Hankal and a Toeplitz matrix which can be solved efficiently in 0(N')
operations using the algorithm given in [5].
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This method has been applied to the configuration shown in Figure 2. The

impedance of the ground surface is given by the Delany-Bazley formula with

flow resistance nzsooousm", a value typical of grassland. Figure 3 is a plot

of barrier insertion loss against frequency at the receiver position (xn’).

3. SOLUTION BY APPROXIMATION AND NINIMISATION

The‘ geometry of the problem is the one shown in Figure 1, where the screen is

new assumed to be infinitely thin and perfectly reflecting, i.e. 9:0. For this

particular case, the sound pressure p can be expressed as a double layer

potential [2] :

 

~ _ 3603?.)
pm = s<F.r ) + M7 )

U r a ax-

where G is, as previously, the Green's function for the plane characterised by

the .admittance a: . p represents the Jump p’-p‘ on the screen and is new the

unknown of the problem. When u is known, the pressure p‘can be computed

anywhere above the ground. BY applying the boundary condition (3p/3x=o) on I‘.

it is shown that p is the solution of the integral equation :

dy. mu F_=(x.=o.y.) (11)

a 3G(F.,F) 3660,?) .
lim - pm) ——dy = -— (12)
xqo 3x [- ax. ’ ax

Instead of solving this equation by a collocation method. we first approximate

p by the classical Kirchhoff approximation [6] : M7.) 2 265.50), i.e. twice'

the incident pressure (above the absorbing ground. with no screen). The use of

this approximation in (ii) to obtain the sound levels behind the screen leads

to correct results in the far field, i.e. at large distances from the screen.

To improve this simple approximation and obtain correct sound levels even in

the near-field, we chose to approximate y. by :

M7.) 3 286:,5”) + My.) coskv_ + B(y-) sin ky-
where A and B are complex functions. Let us assume first that A and B are

constant on I‘. Then these constants can be obtained by minimising the

fol lowing function :
H

f(A.B) = 2 IF' + Af' f Bg‘l (13)

1:1
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36(F0‘F1) 3 ~ ~ 36(F3'Fi)
where: F = —— I: lim — 26(r .r )— dy

‘ 3x x_4° ax r ° ' 3xa '

36655.) 3 Mai.)
f = lim — cos ky _ dy and g = lim — sin ky d‘ Hoax ,- ‘ ans 5 ' Hoax r B ax_ ye

A and B are then obtained by solving a linear system of order 2. 5 corresponds

to the integral equation (12) and the points r,=(x=0,y.) lie on F. The

interest of the method is to save a large amount of computation time, compared
with a collocation method. Indeed, in the classical collocation method. the
distance between two collocation points (where the integral equation is
written) must be equal or smaller than a sixth of the wavelength. In the
method presented here. since the oscillating behaviour of p is already taken
into account with the Kirchhoff approximations and the sine and cosine

functions, the number of points 7' can be much smaller. This property is of
course very important, especially at high frequency.
From several numerical examples, it seems reasonable to divide F into 2 or 4
subintervals on which A and B can be approximated by constants. Figure 4 shows
an example of sound levels against distance computed by using the expression
(14). The continuous line is obtained by evaluating u bythe classical
collocation method ; the broken line is obtained by using the minimisation
method : the crosses are the levels obtained by replacing u by theKirchhoff
approximation 26.

4. CONCLUSION

The aim of the methods presented here is to reduce the computation time and
the storage needed when using boundary integral equations.

They are presented on the simple example of a barrier on a locally reacting
ground. It is obvious that the numerical treatment presented in section 2 can
be used for many types of propagation problems. in two and three dimensions.
The method presented in section 3 has only been applied to the screen problem.
The next two steps will be to study more closely the interest of the method
versus frequency and its applications to other types of propagation problems.
If the first results are confirmed. this could be a very efficient way to
solve boundary integral equations.
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Figure 2. The wedge barrier approximation to the thin screen.
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ac(Fo,'r") a . . aa<F_.F,> .
where : F‘= —— + lim — ZGir°,rl) —— dye

3x x_*o 3: r ax.

f “ma k ac(F_.F‘) d d H a 1 k 366.1.de
: — COS y y an 9: m— sn Y —— y

' x_‘03x r ' 3xI a ‘ x_4°3x r ' 3xg “

A and B are then obtained by solving a linear system of order 2. I corresponds

to the integral equation (12) and the points F'=(x=0,y‘) lie on r. The
interest of the method is to save a large amount of computation time. compared
with a collocation method. Indeed. in the classical collocation method. the
distance between two collocation points (where the integral equation is
written) must be equal or smaller than a sixth of the wavelength. In the
method presented here. since the oscillating behaviour of p is already taken
into account with the Kirchhoff approximations and the sine and cosine

functions, the number of points i. can be much smaller. This property is of
course very important, especially at high frequency.
From several numerical examples. it seems reasonable to divide F into 2 or A
subintervals on which A and B can be approximated by constants. Figure 4 shows
an example of sound levels against distance computed by using the expression
(14). The continuous line is obtained by evaluating p by the classical
collocation method ; the broken line is obtained by using the minimisation
method : the crosses are the levels obtained by replacing p by the Kirchhoff
approximation 26.

4. CONCLUSION

The aim of the methods presented here is to reduce the computation time and
the storage needed when using boundary integral equations.
They are presented on the simple example of a barrier on a locally reacting
ground. It is obvious that the numerical treatment presented in section 2 can
be used for many types of propagation problems. in two and three dimensions.
The method presented in section 3 has only been applied to the screen problem.
The next two steps will be to study more closely the interest of the method
versus frequency and its applications to other types of propagation problems.
If the first results are confirmed; this could be a very efficient way to
solve boundary integral equations.
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Figure 2. The wedge barrier approximation to the thin screen.
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Figure 3. Insert1on 1055 aga1nst frequency. H=3m. F°:(-15m,o), F=(5o,0).
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F1gure 4. Sound leveIs emitted on the ground, against d1stance.

mom, Hum, F°=(-8m,0). €=(a.4.5).
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