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1. INTRODUCTION

Boundary fntegral equation methods are now fairly well known as a too] for
catculating owtdoor sound propagation over noise barriers. Their advantage 1s
in  flexibility, 1n that barriers of arbitrary cross-section and surface
acoustics properties can be accurately represented. Their disadvantage is
computational expense which can be considerable for large barriers and high
frequency calculations, and very considerable if a full three-dimensional
calculation is made.

In this paper, two types of methods are presented to reduce the computational
expense. The first one consists of solving the integral equation by a
¢ollocation method and taking advantage of the particular shape of the matrix.
The second consists of solving the integral equation by using a Kirchhoff
approximation and a least-square minimisation method.

These methods are both applied to the case of a thin screen situated on an
absorbing, flat ground. For simplicity, only the two-dimensional problem is
considered.

2. SOLUTION BY A COLLOCATION METHOD

The geomefry of the problem 1s shown 1n Figure 1. A thin screen of height H is
located on a plane characterised by a specific surface admittance Bc. It is

assumed that the barrier surface 1s also locally reacting, ﬂt(F‘) denctes the

specific admittance at F;:(x.,yQ) on each side 't of r.

Let ?n=(xn.yo) denote the source position and p(r), the acoustic pressure at
r=(x,y). Let G(F,Fo) be the solution of the problem in the absence of the
screen ; G denotes the acoustic prassure emitted above the plane of admittance

Bc with no barrier present. Then, the pressure p{r) can be written as (11 :
V=il aG"""o-" < ¥ L O I el
p(r)=G(r,,r)- - a—(r_.r) (p*-p7)(r )+ 1kG(r_,r) [6*p*+p7p l(r’)} dy, (1)

X
[}
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uhere r 1Hes on I {1.0. xl=o). k 1s the wavenumber, pi denotes the value of p
on aach side 'Y, '
Equation (1) expresses p &t &n arbitrary point in the region of propagation

and c¢an be used to compute the pressure throughout the reglon once p~ are
known. To determine pi. a pair of coupled integral equations 1s obtained from

(1) by letting F approach [ and using the boundary conditions and the
properties of the layer potentials [2,3) on . For r on r,

(p*+p7)F) .. - - R _
———— = 6(r,r,) - ik L_ 6(r,,r) [B*p*+87p7](r,) dy, (2)

and :

1k [B*p*-p~p (1) aG(‘r’ Fy - M l LG [p*-p~)(r.) d (3)
- — - ry = —(r,r,) - ¥im — ('~
z PP o) T e e PP e

where F':(x’.y').'

Equations (2) and (3) are now solved by a simple boundary element method. For
brevity, we consider just the simpler case when the admittance 1s the same an

each side of the barrier, 1.e. Pp*=p"=p. Equations (2) and (3) are then

decoupled. The unknowns are [p] = (p*-p™) and p = (p*+p )/2.
To obtain the solution, I' is divided into N elements r of length h=H/N, i.e :

[y o= {(0,y) = (3-1)hsy, £jh}, and r =(0,y,) 1s the midpoint of T,
A simple c¢ollocation method 1s app1ied. assuming that b and p are
approximately constant on each element and setting rzra. for J=1(1N in

equations (2) and (3). The unknowns p(r ) and [D](;;) are the solutions of two
systems of N equations which can be written :

N
p(r,) = 6(r,,7) - 2 1k ) s, B(r) p(T) (4)
m=1
and
ik . o BG(r f') z -
- — B{r Mol(r,) = L [od(r ) (5)
2 b k] ]
where :
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ath/2 a2 %a(F,F))

8 == G(r,,F ) dy. (6) and t_ := 1im d 7

The computation of G and its derivatives 1s discussed in [4].

Once (4) and (5) have been solved, p elsewhere in the region of propagation
can be calculated by approximating (1) by the composite midpoint rule to give:

. .. ae(F,.'F) . .
p(r) « G((ro,r) - Z T—- [D](r’) + 2 1k G(r’,r) B(r,) p(r_i)' (8)
' hE3] a

The calculations of the integrals s o and t,. are greatly simplified by noting

than the Green’s function G can be written as the sum of a direct and
reflected wave , {.e. : ‘

6(T,7,) = 6, (F,F)) + 6, (F,F) where 6,, (F,F) = -1 HL Y (kIT=F, 1)/4
and that the value of Gr.'(F,F;) depends only on (x-xu) and (y+y°).
Writing s, = s:_+ s;_, where s‘_ and s{_ are defined by (6) with G replaced by

Gdir and &:.' respactively, and using the same notations for t’_, it follows

that :
s:,,'_‘1 = s:_ and t:’1._“ = t:_ for § and m =1(1)IN~1 (9)
and : s L., = Sl and tl o= t{, for 3=1(1)N-1 and m=2(1)N-1. (1D)

Then $9= [s‘_] and T9: [t‘_] are Toepilitz matrices and 8"= (s}, ) and T"= [t;-]
are Hankel matrices, The whole matrices can then be cbtained once a sfngle row
and column of each has been explicitly calculated.

The usual main costs of the boundary element method are a cost proportional to
N2 §n evaluating the coefficient matrices for the Tinear equations {4) and (5)
- this 1s reduced to a cost proporticnal to N by the use of equations (9) and
(10) - and a cost proportional to N® (but with a much lowar constant of
proportionality) for solution of the linear aequations by e.4. Gaussian
alimination. ‘
This Yetter cost may also ba reduced vary substantially by use of the pattern
of the matrices 5 and T. For example, in the simplest casa, when P is constant
on I, the coefficient matrices of the equations (4) and (5) are I1+21kp(89+57)
and -1kpI/2+4T+T" whera I is the order N identity matrix. Each matrix s a sum
of a Hankel and a Toeplitz matrix which can be solved efficiently 1n O(N?)
operations using the algorittem given in [5].
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This method has been applied to the configuration shown 1in Figure 2. The
impedance of the ground surface ts given by the Dalany-Bazley formula with
flow rasistance v=25000Nem™*, a value typical of grassland. Figure 3 is a plot
of barrier insertion loss against frequency at the receiver position {x,y).

3. SOLUTION 8Y APPROXIMATION AND MINIMISATION

The' geometry of the problem is the one shown in Figure 1, where tha screen is
now assumed to be infinitaly thin and perfectly reflecting, i.e. B=0. For this
particular case, the sound pressure p can ba expressed as a double layer
potential [2] :

#G(r,r)

p(r) = 6(r,r,) + p(r,) '™

r Y
where G 1s, as previously, the Green’s function for the_piana charactarised by
the .admittance ﬁc . p represents the jump p*-p~ on the screen and 1s now tha

unknown of the problem. When p 15 known, the pressura p can be computed
anywhere above the ground. By applying the boundary condition (dp/dx=0) on r,
it is shown that p is the solution of the integral equation :

dy, with r_=(x =0,y,) (1)

2 aa(r,, ") 36(r,,r) _
Mm — | p(r)y—4dy, =-——™"— (12)

g O r 7 X ° ax

Instead of solving this equation by a collocation method, we first approximate

p by the classical Kirchhoff approximation [8] : w(r ) 2 2G(r_,r,), 1.0. twice’
the incident pressure (above the absorbing ground, with no screen). The use of
this approximation in (11) to obtain the sound levels bahind the scresn leads
to correct results in the far fleld, 1.e. at large distances from the screen.
To 1improve this simple approximation and obtain correct sound levels even 1in
the near-field, we chose to approximate p by :

w(F,) 2 28(F ,F,) + Aly,) cosky, + B(y,) sin ky,
whera A and B are complex functions. Let us assume first that A and B are
constant on I'. Then thase constants can be obtained by minimising the
following function :
M

¥(A,B) = :E |F| + Af| + Bg'l ) (13)
i=t
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aG(Fo’Fi) ~ o~ aG(Fa'Fl)
wherg : F = ——— ¢+ Jim — 26(r_,r ) ———— dy
! ax wap ™ Jp 0t x, .
f= 1 k 3G(f5,r;) d d 1i o in k aG(f,-f,) d
= ¥im —| eos ky, ———— dy and g .= lim —| sin ky ——— dy
L] x—t0 X r -3 axa -3 1 X0 M r -] ax' a

A and B are then obtained by solving a linear system of order 2, ¥ corresponds

to the integral egquation {(12) and the points F,=(x=0,y‘) HHe on . The
interest of the method 1s to save a large amount of computation time, compared
with a collocation method. Indeed, in the classical collocation method, tha
distance between two collocation points (where the integral equation is
written) must be egual or smaller than a sixth of the wavelength. In the
method presented here, since the oscillating behaviour of p is already taken
into account with tha Kirchhoff approximations and the sine and cosine

functions, the number of points F1 can be much smailer. This property is of
course very important, especially at high fraquency.

From several numerical examples, it seems reasonable to divide I’ into 2 or 4
subintervals oh which A and B can be approximated by constants. Figure 4 shows
an example of sound levels against distance computed by using the expression
{14), The continuous 1ine 1s obtained by evaluating p by the classical
collocation method ; the broken 1line is obtained by using tha minimisation
method ; the crosses are the levels cbtained by replacing p by the Kirchhoff
approximation 2G,.

4. CONCLUSION

The aim of the methods presented here is to reduce the computation time and
the storage needed when using boundary integral equations.

Thay are presented on the simple example of a barrier on a locally reacting
ground. It fs cbvious that the numerical treatment presented in section 2 can
ba used for many types of propagation problems, in two and three dimensions.
The method presented in section 3 has only been applied to the screen problem.
The next twe steps will be to study more closely the interest of the method
versus frequency and its applications tc other types of propagation problems.
If the first results are confirmed, this could be a very efficient way to
solve boundary integral equattons. :
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Figure 1, The two-dimensional noise barrier configuration.
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Figure 2. The wedge barrier approximation to the thin screen,
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ae(r,,r,) 3 L . a(r,r)
whare : F 3 —m—— %+ lin — 26(r,,r ) —=—— dy
k x g % Jp °° ax_ 8
£= in 2 K ALY d dg= tn | sin k 20,1y d
= m— €08 ky —me— Yy and g <« m-=—| sin Ky ——— ¥
' x—0?r X ° ' x—o?X)r s °

A and B are then obtained by solving a linear system of order 2. ¥ corresponds

te the integral equation (12) and the points F|=(x=0,y,) e on . The
interest of the method is to save a large amount of computation time, compared
with a cellocation method. Indeed, 1in the ¢lassical collocation methed, the
distance between twoc collocation points (where the integral equation is
written) must be equal or smaller than a sixth of the wavelenath. In the
method presented hera, since the oscillating behaviour of p is already taken
inte account with the Kirchhoff approximations and the sine and cosine

functions, the number of points F‘ can ba much smaller. This property is of
course very important, especially at high frequency.

From several numerical examples, it seems reasonable to divide I' into 2 ar 4
subintervals on which A and B can be approximated by constants. Figure 4 shows
an example of sound levels against distance computed by using the expression
(14). The continuous 1line 15 obtained by evaluating p by the c¢lassica)
collocation method ; the broken 1line 1s obtained by using the minimisation
method ; the crosses are the levels obtained by replacing p by the Kirchhoff
approximation 2G.

4, CONCLUSION

The aim of the methods presented here is to reduce the computation time and
the sterage needed when using boundary integral equations.

They are presented on the simple example of a barrier on a locally reacting
ground. It 1s obvious that the numerical treatment presented in section 2 can
be used for many types of propagation problems, 1n two and three dimensions,
The method presented in section 3 has only been applied to the screen problem.
The next two steps will be to study more closely the interest of the method
varsus frequency and its applications to other types of propagation problems.
If the first results are confirmed, this could be a very efficient way to
solve boundary integral equations.
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Figure 2. The wedge barrier approximation to the thin screen.
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Figure 3. Insertion loss against frequency. H=3m, F°=(-15m,0), F:(S0.0).
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Figure 4. Sound levels emitted on the ground, against distance.

£=500Hz, H=4m, ‘r}:(-am,O). {=(8,4.5).
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