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1. INTRODUCTION

Propagation of sound above a plane of finite impedance has been the subject of
many papers. - Recent examples giving accurate expressions for the propagation
of sound from harmonic point and line sources respectively are (1] and (2}.
Meteorcloglcal effects, variation of ground height and impedance, limit the
application of these results to environmental sound propagation. Various
authors, attending to the third of these factors, have daveloped calculation
methods for propagation from a point source over a two-impedance p:ane
[3,4,5,8].

The boundary integral eqguation method is wall known in application to acoustic
scattering and its application to outdoor sound propagation has been discussed
by Seznec [7] with reference to the effect of barriers. In this paper we apply
the method to propagaticn above an inhomogeneous impedance pranes. We consider -
in detail two-dimensional problems of propagation frewm a lins source, in
particular ovar a strip of one impedance embedded in a plane of different
impedance. The calculation method L8 used to lnvestigate the effect of

varylng the location between source and receiver of a strip of soft ground
embadded in hard ground,

2, THE BOUNDARY INTEGRAL EQUATIONS

We are cogfagaed with the propagation of sound from a harmonic point or line
source (e =~ time dependence) over normally reacting ground of variable
admittance. We assume & homogeneocus medium in which the wavenumber is k.
The problem may be stated as the following boundary value problem where ¢

is the acoustic potential and L, ¥_ are the receiver and source positions

relative to some fized point, D 15°the reglon above tha ground and D the
ground surface: .

(V2 + k2) ¢{r) = 6{£-£o) for r in D . (L)
with bounda;y conditions

%% {r) = ikBlx)${r) for r in 3D (2}
and, at infinity,

lim ¢ + = refg%- - ik$) = O : {3}
r in D

Here n is the normal te 9D drawn out of D B 1s the ground admittance
(=0 (rigid ground) or Re(R)>0 (energy absorbing condition)}, r = |5|
and €=k, 1 in 2 or 3} dimensions respectively.

By an application of Green's theorem and the use of the equations abowve we
obtain the following general integral equation {?] in which G(E' r) is any
solution of (1) (i.e. a Green's function). ° ’
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for £ in D. In the particular case when 3D is flat and G(r, ) satisfies
{2) with 8(z} = B_, a constant, {4} becomes

$tr) = Glg, £,) - Lk Sy 6lx, r) $tr) (Blx)-B) 45 {g) (5)

-
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(g, r) as {g) (4)
w! &g >3

$(z) = Glx, z ) -al.)hb(_r,s) {ikBG(z, r.) -

which holds both for r in D and in 8D, and constitutes a singular Fredholm
integral equation of the second kind for r on d0. HNumerical solution of this
equation, obtaining values of ¢$(z} for f on 9D, enables the calculation, by
substitution in (5) of $(r) for r in D.

3. NUMERICAL SOLUTION

We consider in this section the numerical solution of (5), restricting our
attention for simplicity to the two-dimensional case of propagation from a line-
source, the method extending to the three-dimensional case with a corresponding
increase in computational time and storage. We assume that B{xr} differs from

8 only within some bounded region of 3D and that B(r) varies only in a
afrection perpendicular to that of the line source so that the problem is
_effectively two-dimensional {see Fig. 1). Equation (5) becomes, for r in aDh,

B0 = 8(x,0,2) - ik 0 glklxex [ le) (Bix 1B dax, (6)
Here G(x, x', z') is the potential at (x,0) in a surface of admittance Bc due
te a line source at {x', z'), and g(klx-xsli Z GUx,x,00. |

We have used the simplest guadrature method of solution of this equation

{Mayers {8]) in which we approximate the integral in (6) by the midpoint rule,
modified slightly to account for a logarithmic singularity in g{t) at t = 0.

The right hand side of {6) then involves only values ¢ = ¢(x ) of the potential,
at N equally spaced polnts x_ = a + {n-k)h forn = 1, E. ---.nN with Nh = Is=b-a,
Once these values are known equation (6}, or the corresponding version for r

in D, can be used to calculate valuea of ¢ elsewhere in D or ap.

Having approximated the right hand side of (6) by our quadrature rule so that
it involves conly the unknowns ¢n' we obtain N equations for these unknowns
by setting X=X for n=1, 2, ..., N in (6) leading to :

Z amd)n = bm for m=1,2,...,N with bln .== G(xm,O,zo) (7,8}

and & = [ 1+ikhg(0) (B (x ) -Bc) ;f m=n ©)

skhg (k| x =x |} {Bx )-B ) otherwise
p - L s/ -
with § (klx-x |) = ¢ {hlz glk|x -x +t|) at
1 i 1 18 {e+d) (B~ (1+cd)) (1-cd)
T ln{hk}- /2 + H (y=-21n2-1} + "m-sz’ln [ fody (B-1({i-cd)) (1+cd)li£ n=n

10
gik Ixm-xnl ) otherwise, (10)

with ¢ o/{148 } 4 = /(1-R and - % < arg .-"(1-32) . argf{c), arg(d)¢ % and the
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principal value of the logarithm being taken. The detailed derivation of this
result and the accurate evaluation of G(x,x' »2') and g{t) are disccused in [2].
The equations (7) may be solved by Gaussian elimination., The Gauss-Seidl
iterative method is also attractive when it converges,

Any variation of admittance in a < x < b can be accommodated in this method,
Perhaps of particular interest however is the case when B(x)ZB is constant,

i.a. we are considering a strip of admittance B embedded in a plane of
admittance B ., In this case equations (7) are highly structurad, the coefficlen
matrix f{a )cbaing symmetric and Toeplitz. (A matrix {2z ] is Toeplitz if the
elements each dlagonal are the same, f,e, the value"Bf = depends only on
®-n). The application of the Gauss-Seidl method to (7) in thid cage, including
conditions for convergence has been discussed in {2]). Somewhat more efficient
however, and equally effective in cases where Gauss-Seidl iteratign fails to
converge, is the algorithm of Trench [9} which solves (7) with 3N multiplic-
ations and storage 4N. By conl:rasts even making use of the symmetry of fa _J,
Gausgian elimination requires 1/6 N™ multiplications and storage of 4N° pumbers.
The accuracy of the values of ¢ calculated on 3D and in D depends on the quad-
rature step~size h and is discussed in [2] in which a value of h=0,2 wavelengths
is found to give results accurate to within 0.4dB in a ramge of cases,

3. CALCULATIONS - THE EFFECTS OF
SOFT GROUND LOCATION

In this section we illiustrate the calculation method of the previous
section, The situation is that of Fig, ) with 8 =0 so that the ground is rigid
except in a < x < b where the ground has finite impedance with admittance B
given as a functicn of frequensx by equations of Delany and Bazley [10] with
flow resistance ¢ = 250000 Nsm *, These equations and value of flow resistance
have been found to model wall the admittance of grassland f11].

Graphs of excess attenuation (EA) at a receiver point, defined by,

BA = =20 log, . |6/4,] (11)

where ¢,¢d are the total potential and the potential of the direct wave
respectively are shown in Figs. 2 and 3, In Fig. 2 are shown the cases of rigid
ground {L=0), finite impedance ground (L==), and the variation of EA with a when
L=10m and all other variables are fixed. Fig, 3 shows, for various values of a,
the varlation of EA with r. The calculation method is that of the appendix

of [2] in the homogenecus case, and that of the previcus section with h=0.2
wavelengths in the case of inhomogeneous ground.

Figs. 2 show that the received sound pressure level can depend on tha location
of soft ground between source and receiver and not merely tha proportion. In
particular in Fig. 2{a) where source and receiver are close to the ground, it is
clear that at frequencies where the soft ground has the effect of reducing the
noise level, the reduction is most significant when the scft ground is
immediately adjacent to the source {or by reciprocity the recivar). In Flg. 2(b;
where source and recelver are lifted off the ground so that the path difference
between direct and geometrically reflected rays becomes significent, the
situation is more complex. We note that the EA values for half soft ground
between scurce and receiver do not, in this figure, at certain frequencies,

lia between those for all soft and all hard ground. In Fig. 2(a) however,

it is a reascnable approximation, particularly when a = O or 10m, to estimate
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the EA by the average of the EA's with all soft and all hard ground,

Fig, 3 gives some idea of the glcbal effects of a strip of soft ground parallel
to the source embedded In a rigid plane, 1In this case scurce and receiver are
both at height 0,.5m, the frequency is 800 Hz, and the strip width 25m, It
can be seen that as distance (r) from the source increases, initially the
curve for all hard ground is followed. AS the soft strip is traversed a
diffraction pattern gives way to an increasing excess attenpuation. Another
diffraction pattern is cbserved at the end of the soft ground and the EA then
decreases to a fipal asymptotic value, In Fig, 3 the noise level at large
distances from the sturce 18 lower the nearer the soft ground is to the source,
It is seen that placing the soft ground strip Sm away from rather than adjacent
to the source increases the sound pressure level at the receiver (for r > 50m)
by over 3dB, This suggests that soft ground near the source (and by

- reciprocity the reciver) may be particularly important in reducing noise. As
a result of this an accurate calculation of the propagation of environmental
noise over mixed ground may have to include specifically the ground cover in
the proximity of the source and receiver as well as the proportion of ground
types beneath the propagaticn path.

4. CONCLUSION

In this paper the boundary integral equation method has been applied producing
integral equations modelling in particular sound propagation above an
inhomogeneocus impedance plane. The numerical solution of the integral equation
modelling propagaticon from a lipne source over flat ground of impedance

varying in a direction perpendicular to that of the line source has been
discussed in detail. Results calculated using this method in the particular
case of a strip of finite impedance embedded In rigid ground suggest that the
location as well as the proportion of soft ground between source and receiver
may be significant in the calculation of the propagation of environmental

noise over ground of mixed type.
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Fig. l: Geometry of source and receiver above an inhomegeneocus plane
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Flg. 2 : Excess attenuation of a cylindrical wave. Situation is Fig. 1

with r=20m: {a} g, =2n" O.lm; (b) 2 = g = 1,0m.
in Hz,=—inhcmogenécous surface: L = 18111, B, =0, B(x) as in text, a is
varied, @ rigid surface, @ homogenecus “impedance surface, B(x)=8 ,

Parameter is frequency

calculated as in text. ‘The curves are symeetric about a=5m by reclﬁmcity.
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Fig. 3: Excess attenuation of a cylindrical wave as a function of distance
from source. Situation is Fig. 1 with frequency = BOOHz, z =2=0.5m, L = 25m,
Bc=o. B(x) calculated as in text. Parameter is a in metresS The curves
intersect at r = 30, 45, 50m by reciprocity.
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