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1 . INTRODUCTION

Propagation of sound above a plane of finite impedance has been the subject of
many papers. - Recent examples giving accurate expressions for the propagation
of sound from harmonic point and line sources respectively are [l] and [2].
Meteorological effects, variation of ground height and impedance, limit the
application of these results to environmental sound propagation. Various
authors, attending to the third of these factors, have developed calculation
methods for propagation from a point source over a two—impedance piane
[3.4.515] .

The boundary integral equation method is well known in application to acoustic
scattering and its application to outdoor sound propagation has been discussed
by Sense (7] with reference to the effect of barriers. In this paper we apply
the method to propagation above an inhomogeneous impedance plane. We consider
in detail two—dimensional problem of propagation from a line source, in
particular over a strip of one impedance embedded in a plane of different
impedance. The calculation method is used to investigate the effect of
varying the location between source and receiver of a strip of soft gromd
embedded in hard ground.

2. THE BOUND!“ INTEGRAL EQUATIONS

we are cogfagned with the propagation of sound from a harmonic point or line
source (a time dependence) over normally reacting ground of variable
admittance. We assume a homogeneous medium in which the wavenumber is k.
The problem may be stated as the following boundary value problem where 9
is the acoustic potential and 5, 3 are the receiver and source positions
relative to some fixed point, D isothe region above the ground and 3D the
ground surface:

\
(v2 + k2) M5) = “5-50) for 5 in u ‘L m
with conditions

at (5) s LkBt5W(5) for 5 in an (2,

and, at infinity,

limr-ND z‘(%-1x¢) =0 (3)
5 in D

Here n is the normal to 3D drawn out of D B is the ground admittance
(B-=O (rigid ground) or Re(8)>o (energy absorbing condition)), I = [5|
and (i=5, 1 in 2 or 3 dimensions respectively.

By an application of Green's theorem and the use of the equations above we
obtain the following general integral equation [7] in which 5(5, 5 ) is any
solution of (l) (i.e. a Green's Emotion). O

Proc.l.0.A. Vols'vpma (1934) ‘ m

 



 

Proceedings of The Institute of Acoustics

DIFFRACI‘IW AT AN INHOHOGENEOUS PLANE

‘ as
45(5) = ms, 50) 39%) (ikfimz. r (41-s) - figs) (‘5' £5) as (55)

for g in D. In the particular case when 313 is flat and 6(5, :0) satisfies

(2) with 8(5) = BC, a constant, (4) becomes

M5) a fig, 5°) - ik fab 6(5, 55) W55) (8(55)-6c) d5 (55)

which holds both for 5 in D and in 3D, and constitutes a singular Fredholm

integral equation of the second kind for .r‘ on 30. Numerical solution of this

equation, obtaining values of @(5) for 5 on GD, enables the calculation, by

substitution in (S) of M5) for 5 in D.

3. NUMERICAL SOLUTION

(5)

we consider in this section the numerical solution of (5) , restricting our

attention for simplicity to the two-dimensional case of propagation from a line-

source, the method extending to the three-dimensional case with a corresponding

increase in computational time and storage. We assume that Bk) differs from

B only within some bounded region of 3D and that 8(5) varies‘only in a

direction perpendicular to that of the line source so that the problem is

effectively two-dimensional (see Fig. 1). Equation (5) becomes, for 5 in 3D,

mm = G(x,0,zo) - ixf g(ka-xsl)|1)(xs)(5(xs)-Bc)dxs (6)

Here Glx, x', z') is the potential at (x,0) in a surface of admittance BC due

to a line source at (x', 1'), and gtklx-xsll E G(x,xs,o).

We have used the simplest quadrature method of solution of this equation

(Mayors [8]) in which we approximate the integral in (6) by the midpoint rule,

mdified slightly to account for a logarithmic singularity in g(t) at t = 0.

The right hand side of (6) then involves only Values w = ¢(x ) of the potential,

at N equally spaced points x = a + (n-5)h for n = l, , .,nN with Nh = lFb-a.

Once these values are knmn,equation (6) , or the corresponding version for 5

in D, can be used to calculate values of o elsewhere in D or an.

 

Having approximated the right hand side of (6) by our quadrature rule so that

it involves only the unknowns on, we obtain N equations for these unknowns

by setting xexn for n=1, 2, ..., N in (6) leading to

N
i=1 am¢n = hm for m=l,2,...,ll with 1:.In I= 6(xm,0,z°) (7,8)

and a = [1+ikngto)(e(xm)-Bc) if m=n m

ikhg(k|xm-x I)(B(xn)-Bc) otherwise

- _ a .1. /2 _with g (kam xnl) h {M2 9(klxm xn+t|) a:

1 i 1 is (ad) (B—1u+cd)) (l-cd)
— lnihkl- /2 + —- (y-zmz-l) + -—— ln {_—B_——_———l1£ m=n

g n n "4142) (c d)( 1(1 cd))(1+cd) ( o)

l
g (k Inn-xnl) otherwise,

with c slum )a nm-s and - g < arg {(1—52) , ug(c) , arg(d)( g and the
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principal value of the logarithm being taken. The detailed derivation of this
result and the accurate evaluation of G(x,x' ,z') and g(t) are disccusad in [2].The equations (7) may be solved by Gaussian elimination. The Gauss-Seidl
iterative method is also attractive when it converges.

Any variation of admittance in a < x < b can be accommodated in this method.Perhaps of particular interest however is the case when 80038 is constant,
i.e. we are considering a strip of admittance B embedded in a plane of
admittance B . In this case equations (7) are highly structured, the coefficien'
matrix [a [chaing symmetric and Toepiitz. (A matrix [2 J is Toeplitz if. the
elements 531m each diagonal are the same, i.e. the vaiuem'o'f 2 depends only onm-n) . The application of the Gauss-Said}. method to (7) in mi? case, including
conditions for convergence has been discussed in [2). somewhat more efficient
however, and equally effective in cases where Gauss-Seidl iterati fails to
converge, is the algorithm of Trench {9] which solves (7) with an multiplic-
ations and storage 4“. By contrast even making use of the symmetry 0 (a ],
Gaussian elimination requires ]'/6 N multiplications and storage of 5N nuggets.
The accuraw of the values of o calculated on 30 and in D depends on the quad-
rature step-size h and is discussed in {2] in which a value of h=o.2 wavelengths
is found to give results accurate to within 0.4d3 in a range of cases.

3. CMCULNHGIS - THE EFFECIS OP
SOP! GROUND IDCRTION

In this section we illustrate the calculation method of the previous
section. ‘me situation is that of Fig. l with Bc=0 so that the ground is rigid
except in a < x < b Where the ground has finite impedance with admittance 3
given as a function of frequen by equations of Delany and Harley [10] with
flow resistance a =_ 250000 Nsm- . These equations and v_alue of flow resistance
have been found to model well the admittance of grassland [ll].

Graphs of excess attenuation (EA) at a receiver point, defined by,

as = -2o loglo Wodl (u)
where mod are the total potential and the potential of the direct wave
respectively are shown in Figs. 2 and 3. In Fig. 2 are shown the cases of rigid
ground (he) , finite impedance ground (La) , and the variation of BA with a when
L=lOm and all other variables are fixed. Fig. 3 shows, forvarious values of a,
the variation of EA with r. The calculation method is that of the appendix
of [2] in the husogeneous case, and that of the previous section with 11:0,:
wavelengths in the case of inhomogeneous ground.

Figs. 2 show thatthe received sound pressure level can depend on the location
of soft ground between' source and receiver and not merely the proportion. In
particular in Fig. 2(a) where source and receiver are close to the ground, it is
clear that at frequencies where the soft ground has the effect of reducing the
noise level, the reduction is most signifith when the soft ground is
immediately adjacent to the source (or by reciprocity the reciver). In Fig. 2le
where source and receiver are lifted off the ground so_ that the path difference
between direct and geometrically reflected rays becomes significant, the
situation is more complex. We note that the EA values for half soft ground
between source and receiver do not, in this figure, at certain frequencies,
lie between those for all soft and all hard ground. In Fig. 2(a) howevar,
it is a reasonable approximation, particularly when a = O or 10m, to estimate

when VoIe'P-na new “’3
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the EA by the average of the EA's with all. soft and all hard ground.

Fig. 3 gives some idea of the global effects of a strip of soft ground parallel

to the source embedded in a rigid plane. In this case source and receiver are

both at height 0.5m, the frequency is 800 Hz, and the strip width 25m. It

can be seen that as distance (r) from the source increases, initially the
curve for all hard ground is followed. As the soft strip is traversed a

diffraction pattern gives way to an increasing excess attenuation. Another

diffraction pattern is observed at the end of the soft ground and the EA then

decreases to a final asymptotic value. In Fig. 3 the noise level at large

distances from the source is lower the nearer the soft ground is to the source.

It is seen that placing the soft ground strip 5m away from ratherthan adjacent

to the source increases the sound pressure level at the receiver (for r > 50M)

by over Eda. This suggests that soft ground near the source (and by

' reciprocity the reciver) may be particularly important in reducing noise. As

a result of this an accurate calculation of the propagation of environmental

noise over mixed ground may have to include specifically the ground cover in

the proximity of the source and receiver as well as the proportion of ground

types beneath the propagation path.

4 . CONCLUSION

In this paper the boundary integral equation method has been applied producing

integral equations modelling in particular sound propagation above an

inhomogeneous impedance plane. The numerical solution of the integral equation

modelling propagation frcn a line source over flat ground of impedance

varying in a direcan perpendicular to that of the line source has been

discussed in detail.. Results calculated using this method in the particular

case of a strip of finite impedance embedded in rigid ground suggest that the

location as well as the proportion of soft ground between source and receiver

may besignificant in the calculation of the propagation of environmental

noise over ground of mixed type.
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Fig. 1x Geometry of source and receiver above an inhomogeneous plane
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Fig. 2 : Excess attenuation of a cylindrical wave. Situation 15 Fig. 1
with r=2mu (a) to = z a 0.1m: (h) z = z = 1.0m. Parameter is frequency
in Hz—inhnmogeneous surface: L = 18111, B = 0, 80:) as in text, a is
varied. a rigid surface. a homogeneous impedance surface, “3059:.
calculated as in text. The curves are symmetric about a=5m by reciprocity.
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Fig. 3: Excess attenuaan of a cylindrical wave as a function of distance
from source. Situation is Fig. 1 wlch frequency = 5001-12, 2 =z=o.5m, L = 25m,
Bc=°t 3(x) calculated as in text. Parameter is a in metres? 'me curves
intersect at x = 30, ‘5, 50111 by reciprocity.
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