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The problem of acoustic propagation from an isotropic monofrequency polnt
source in a homogeneous fluld half-space above a locally reacting plane
boundary of unlform surface impedance is one of the basic theoretlcal
preblems arlsing from a study of outdoor sound propagation. Good recent
treatments of this problem are given in [15,16,11). The related, and
sinpler problem, of propagation from a horizontal coherent line source
above a horlzontal plane of uniform surface Impedance, has recelved
relatively little attention, perhaps because of its less obvious practlcal
application. Exceptlons are the discussions of Heins and Feshbach ([10],
Rasmussen [13], Habault {9], and Chandler-Wilde and Hothersall [2].

Recently the Interest in calculation of sound propagation above a
homogenecus impedance plane has received a new Impetus, due to the
developpent of boundary element sethods for the calculatlon of outdoor
sound propagation over inhomogeneous flat terrain, and over nolse barrlers
[14,2,9,3,4,5]. For nany practical problems a two-dimensional
approximation ls  adequate. An  essentlal requirement of the
tuc-dimensiona! boundary element method Is a foraula for calculating sound
propagation from & line source above a homogenscus lmpedance plane. For
the application of such a forpula to the boundary element method, the
Interest i1s not just in the case when the recelver ls a large number of
wavelengths from the geometrical image of the source. Inage-recelver
distances perhaps as small as 1/10 wavelength are also important.

THE SOLUTION IN INTEGRAL FORM

Flgure 1 shows the sltuatlon In the plane perpendicular to the llne source

-and the Cartesian co-ord!nate system used. r, = (x,,¥,) Is the position
of the source, ry = {x,,-y,} the positlon of éhe image of the source, and
r = (x,y} Is the position of the receiver. ;

R' = Ir - 1.} (1)
is the distance from image to receiver and 8, is the angle of incldence.

Let Gglr,r,) denote the acoustic pregsure at point r due to a unit sinple
source at r, (time dependence e” WL for the acoustic field Is assumed
throughout). Then Gg(r,r,) satisfles the Helmholtz equatlon

{v? + k%) Gglr,T,) = 8(r-ry), (2)
in y » 0, the Impedance boundary conditlon,

&Gg(r.r,) + 1kBGglr,ry} = 0, (3)
3y

on y = 0, and the Sommerfeld radiatlon conditlon. In equatlons (1) and
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(3}, k is the wvavenumber in the fluld medlum,

a a8
ax? + 5;2
nornallsed surface admittance. It will be assumed throughout that elther
8 = 0 {the plane 1s rigld) or Re 8 > 0 (the plane ls energy-absorbing},

In the case vhen B = 0, the solution to the above boundary value problem
is easily found, by the method of images, te be

i i , :
Golr.Tp) = = & B kR) - ; B (kR*) ()

(where R = lr-r,l). In the general case, it 15 convenient to write Gy as
the sum

vi = is the Laplacian operator, and the constant 8 Is the

GB = G°7+ PB' . ‘ ) (5)

By Fourler transform nethods, PB 1s then determined to be [10,5]

o 18 rexp(!k((ywn)ﬁ-S‘ - txx)s) ©

B%2n ) A-stT (i-sT + 8) | :
where .

Relvi-s?), Im(/1-s5%) 3 0. . %))

To obtaln an expression for Pg more suitable for calculation, the
substitution s = sin® is made to remove the branch peint singularities In
the integrand of (6}, and the path of !Integration in the resulting
Integral s deformed to the steepest descent path. Thls ]eads to the
representation [13,2,9]

Py = Pg ) + Py ' (8)
where ®
ip ‘
Pé”- B J t# e Pt £(1) at, (9)
n
1]
p =kR', 7 =cos 8, . ] (10,11)
(B + {1+ it)y)
) = - T e R0 o we
(8 + {1+ it)y) . (13)
T AT (t7-21(14By)t - (By)T)’
a, = 1+ By ¥ /1-8° Ayt , Re (/1-8%) 3 0, {14)
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(8//i-87) elP11-8,) {f InB <O andRe a, <0,
PQS) = | %(8//-B7) elP11-8,)  1f In B < 0 and Re a, =0, {15)
o, othervlise.

Provided the function £{t} is a smooth, slowly-varying function on the
positive real axis, the representation (9) for P T)"js very suitable for
numerical lintegratlon. In fact Gaussian quadrature can be applled with
welght functxo t™ e P, To apply Gausslan quadrature It ts convenient
to rewrite P tn the form

ip .

T

é Y 535 I s ™8 £{s/p) ds. (16)
o

It 1s easy to see that, for all values of 8 and 7,

Re a_ » 1. {17}

Also

Reat » 1 - 11-821% > ¥ If 11-B] < ¥, (18)

Thus, If 11-8] < ¥, f{t) is a regular analytlec function In Im t < 4. Note
also that, from {15) and (18),

r _
Py = Pe ), 1618 8 > 0 or I1-Bl < &. (19)

Unfortunately, when B8 and 7y are small {a frequent combination In outdoor
sound propagatlon)

8, ® %(B + yP (20)

and la, lies near the positive real axls. Equation (8) 1s not so suitable
for caTculatlon when this Is the case.

To obtain an alternative representation for Pg, the pole of f{t} at
t = la,, which causes the dlfflculty, is subtracted. A function g, which
can be shown to be regular In In t < 1 (5], 1s defined by

o(t) = £(t) - e iM 4z, (t-1a, 71, RelvE}) > 0. (21)
2/1-gt

Substituting for £ In {16), using equation {(19), and a representation of
the error function [1, equatlon {7.1.3)), it is found that, for Im 8 > 0,

galpf1-8,) erfc(emiMé5 5,).  (22)
2/1-8

gelP

- — - -4 -5
Pg - I s e % gls/pMs +

It can be shown [5) that, with the choice of branch cuts mpade In (14} and
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{21), the right hand side of this equation, considered as a functlon of B,
ts regular in the half-plane Re.8 > 0, cut from 1 to += along the real
axls. From equatlon (6} it is clear that Pg Is regular throughout the
half-plane Re B > 0. Hence, by analytic contlnuation and continuity,
equation (22} holds throughout Re £ > 0, except clearly at 8 = 1.

Equatlons (16} and (22) do not apply If p = 0, and this Is an important
case for the applicatlon to the boundary element method. Fortunately,
when p = 0, the integration can be performed analytically [5], glving

R - —A
iB In [B 1/1-8 ]' Bé1,
/-8t B + iv1-8
PB(I.',I') - (23)
1 B =1,
n -

where the princlpal value of the logarithm is to be taken.
THE USE OF GAUSS—LAGUERRE OQUADRATURE

The representations (16) and (22) are In the correct form for the
application of Gauss-lLaguerre quadrature [7]. Thus the followling
approximation for Pg can be proposed. From equatlons (16} and (19), for
11-8] < 4,

- gelp B
PB L] Pn,m o "H_JE j):l "],n f(xj‘n/p), {24)

where n » 1, 1 ¢« m € n, and w netere Wp are the weights and
X) pevr-+s Xp p &re the absc!fsae of %he n=polint E%uss—Laguerre quadrature
rule with wefght function s e™%. Values of these abscissae and weights
are tabulated for n = 1, 2, ..., 15 in columns 1 and 2 respectively of
Table IT in Concus et al [7]). Note that Xy g = % and wy ; = /A, and that
only when m = n in (24) is the full Gauss-Laguerre quadfature rule being
used.

By applying Gauss-Laguerre quadrature to (22) an alternative approximation
fs obtained, for 8 ¢ 1, namely .
Pg~P ra erfete™!Méz ya) + — I w glx; o/p). (25)
B n,n 2 /i-p? + WEjo bon J.n

Note that the calculation of the complementary error function erfc lis
discussed in [12,6), and coefficients of Padé approximants for erfc are
given In Table 2.1 of [5].

It can be shown that f Is analytic and bounded in a region including the
real axis If |1-B] < %, while g ls analytic and bounded in a reglon
including the real axis If |8l ls bounded and [1-8]| is bounded away from
zero. In fact it can ba shown that [5])
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I£(t)] < 25, for 11-Bl < % andlnt ez . (26)

and slmilar arguments establish that
lg(t)l < 90 + ¢11-81"% , for I8l ¢ 1 and Im t & X. (27)

This feature makes the approximations (24) and (25) complementary, (24) s
sultable for B near 1 and (25) sultable elsewhere.

The repainder of thls sectlon considers the errors made in using the
approximations (24) and (25).

IPg-Pp nl & 1Pg-Pp nl + 1Py n-Pp ol (28)

and, from (26),

IPn n~Pn, m' < 10p7% : ¥j.n (29)
j=m#l 7

From {(26) and standard results on Gauss-Laguerre quadrature (7,8), it can
be shown that [5]

Pg-Pp pl < 71 (2n)128073 o= (204} or 1-81 < 4, (20)
and that, for all «, p, > O,
IPg=Pp.nl € €p 2™% for 11-BI <%, p 3 py, (31)

where ¢, -~ 0 as n = =. For each n, ¢, depends on n, a, and p,, but ls
lndepenéknt of p, B, and 7.

Similarly

IPB-ﬁn I N I | S A ' (32)

1By, n~Pn,al < 18107 '”(90+4|1-B|"‘1E Wj.p. for 181 €1, (33)
‘ J=n+l

IPg-Bp o) < (45+211-817%)nH%(2n)1ane™ (20¥4), gor 181 ¢ 1, (34)

and, for all «, p,, ¢ > 0,

(Pg-Pp | € @y #7%, for p > p,, 11-B1 > ¢, 18] ¢ 1, {35)

where d, = 0 as n = = with «, p, and ¢ fixed.

The above bounds show clearly that the approximation (24} Is pore
appropriate for 8 near 1, and (25) moye appropriate elsewhere. Note also
that (30) and (34) show that B and P, , are excellent approximations

in the far-field (p = =) even ?f only oné quadrature point is used {n=1).
The sunm of weights which occurs in the bounds (29) and (33} is usually
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small If both m and n are large. Since the work In evaluating the sums
in (24) and (25) is proportional to m, It Is desirable to keep m as low

as posslble.

In a FORTRAN subroutine wrltten by the authors the approximation ﬁ40 22
has been adopted for [1-B] » 0.1 and Py 55 for [1-B1 < 0.1. for
Pdo 22 @n interesting quantity Is

1Pa-Pao 221/ 1-0/0ME 11, (36)

This is the error yhich will arise in the reflectlon coefficient if it is
calculated using Psq 55 @s an approximation for P, Estinates of the
maximup value of the fuantity (36) when p is fixed, Evarles in the range,

I8l ¢ 0.8, -65° ¢ arg B « 89, and elther y = D or 0 € ¥ ¢ 1, are shown,

for values of p, In Table 1. (To calculate these estinates Pg is replaced
by Pyoo,10p, In (36), and (36) is then evaluated for |8] ="0.1(0.1)0.8,
arg d ='—23 {9.9°)89°, 7 = cos 9, = 0°{107}50" .} Note that the range
of B conslidered [ncludes nost” va?ues of lInterest In outdoor sound
propagation. Since

40

I wyp<1.9x10715 (37)
Je23 7’
and
{1) TR
I-{i/d, "(p)l > 0.2507" p™*, for p > 4, {38)

it follows from (32) and (33) that, for (8| € 0.8 and p > %,
[ 22I/|-(i/d)H(“(p)l < IPg-Pyg. ol /1-0/0R ()1 + 3.ax10713, (39)

For values of p greater than those shown in Table 11 the maximum value of
the error (36) is found to remain at about 8 x 10713, which, taking into
account rounding errors, 1s consistent with the bounds {35) and (39).

SOME FURTHER FORMULAE

The previous sections have shown how Gg can be calculated accurately. In
the two-dimensional boundary integral equation methed for the calculatlion
of sound propagation from a line source over a nolse barrier [4] it s
Important also to be able to calculate the derlvatives of GB From (4)

and (5), since
H;l) (x) = —#?(x),

(1} {1 ,
Wglr.r,) = ik Hy (kR)(r-r,) + lk Hy (kR ’(r‘fn) + VPglr.r,). {40)
° 4 R 4 R
It follows, baslcal]y'from the boundary condition (3), that
a3 (1)
a Pglr,ry) = —2 fp) - ikB Pglr,r, ), (41)

while an argument along the |lnes ‘of that leading to (22) shows that

’
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g; Pglr,ry) = ikB elp sign(x—xol(ﬁe-lpa+ erfele-in/4 VP vay)

- n‘lp'”‘[ s e~Sg*(s/pMs)
0

AT (B+y+iBt) _ ein/d g
K21 (t-ia,)(t-fa_)  2(t-ia,)

{42)
where

(43)

gt{t) =

The Gauss-Laguerre quadrature of the previous section can be used to
calculate 8Pg/8x, and the similarities between the expresslons (22) and
(42) make it efficlent to calculate Pg and its derivatives sinultanecusly.

An anslysls similar to that leeding to equations (16) and (22) can be
given for the three-dimensional preblem of propagation from a polnt source
over a plane of admittance B [5]. (For this problem Flgure 1 should be -
thought of as showing a vertical cross-sectlon through point source and
recelver). 1In the general case the expressions corresponding to (16) and
(22) are somewhat complex. Some simplification occurs If ¥ = 0 (l.e. at
grazing incidence). Gg (which satisfles (2) and (3) as in the 2-D case,
though with 92 and & now the 3-D Laplacian and Dirac delta function
respectively) satisfles equation (5} with (if y=0),

G, = -e'P/(2mR), (44)
4kg olPp1p7% j s¥e~5t(s/plas, 11-Bl ¢ &,

(45a,b)
0 . ‘
PB' . {
wk elon~1p7% I s %e"5g(s/plds + :—B Hi”(p‘/i—ﬂ’)erfc(e'l““/ﬁ va,),
0 81,
where (1) :
) -BeP -1y " (p(14it)) (141t) “e)
Jt-2i (t-la M e-ia_) '
5it) = 2t) - e, e1o/IB i1 (o AT (e, )L, )

att) is regular In Im t < 1, and, If |1-Bl < X, £(t) s regular in
Im t < . The Gauss-laguerre methods of the previous section should be
used to evaluate the integrals In (45). The representations (45) nmay
prove useful for the numerlical sclution of the boundary Integral equation
[9,5) describlng propagation from a polnt source above an inhomogeneous

impedance plane.
CONCLUSIONS

Accurate and efficient approximations {equations (4}, (5), (24) and (25))
for calculation of sound propagetion from a line source above a
homogeneous impedance plane have been described and analysed. The

Proc.1.O.A. Vol 10 Part 2 (1988) - 529



Proceedings of The Institute of Acoustics

PROPAGATION FROM A LINE SOURCE ABOGVE AN IMPEDANCE PLANE

approximation based on equation {25), with n = 40 and m =« 22, has been
shown, by thecretical analysls and systematic calculations, te be accurate
for all angles of incidence, and for a range of surface admittance which
includes those values usual 1n outdoor sound propagation. High accuracy
is retalned even when the distance between image and receiver is as smsll
as 1/10 wavelength.

Simllar approximations have Dbeen outlined for calculating the spatlal
derlvatives of the solutien for propagation from a llne source, and for
the problem of propagation from a peoint source over a homogeneous
impedance plane at grazing incidence.
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Table 1. The estimated maximum error, over the ranges of B and v indicated,
in the reflection coefficient, when it is calculated by using P4p,20 as an
approximation for Pg.

|8] < 0.8, - 69° < arg 8 < 89°

p p/(2m) o< vy <1 Yy=0

0.5 0.0796 3.2 x 10°9 7.7 x 10”7
0.75 0.119 2.8 x 1076 2.8 x 10~8
1.125 0.179 1.3 x 10~7 4.5 x 10-10
1.688 0.269 2.7 x 10-° 3.4 x 10-12
2.531 0.403 2.1 x 101! 7.9 x 10-13
3.797 0.604 8.0 x 10-13 8.0 x 10-13

Figure 1. Geometry of source and receiver above impedance plane
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