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The problem of acoustic propagation from an isotropic monofrequency point

source in a homogeneous fluid half-space above a locally reacting plane
boundary of uniform surface impedance is one of the basic theoretical

problems arising from a study of outdoor sound propagation. Good recent
treatments of this problem are given in [15.16.11]. The related. and
simpler problem, of propagation from a horizontal coherent line source
above a horizontal plane of uniform surface impedance, has received

relatively little attention, perhaps because of its less obvious practical
application. Exceptions are the discussions of Heins and Feshbach [10].
Rasmussen [13], Habauit [9], and Chandler-Hilde and Hothersail [2].

Recently the interest in calculation of sound propagation above a
homogeneous impedance plane has received a new impetus. due to the
development of boundary element methods for the calculation of outdoor
sound propagation over inhomogeneous flat terrain, and over noise barriers
[id,2,9,3,4.5]. For many practical problems a too-dimensional

approximation is adequate. An essential requirement of the
two-dimensional boundary element method is a formula for calculating sound
propagation from a line source above a homogeneous impedance plane. For
the application of such a formula to the boundary element method, the
interest is not just in the case uhen the receiver is a large number of

wavelengths from the geometrical image of the source. Image—receiver

distances perhaps as small as 1/10 wavelength are also important.

THE SOLUTION IN INTEGRAL FORK

Figure 1 shows the situation in the plane perpendicular to the line source

and the Cartesian co-ordlnate system used. 1' - (x°,y°) is the position

of the source. r; - him-yo) the position of t°he image of the source, and
r - (x,yi is the position of the receiver. a

R' - Ir - r3! (1)

is the distance from image to receiver and on is the angle of incidence.

Let Gs(r,r°) denote the acoustic pfggsure at point 1- due to a unit simple

source at rc (time dependence e for the acoustic field is assumed

throughout). Then Ga(r,r°) satisfies the Helmholtz equation

(v‘ + k') Gslrmo) = air—r0). (2)

in y > 0, the impedance boundary condition,

fight”) + ikBGBH'J‘D) = 0, (3)

3y

on y - 0, and the Sommerfeld radiation condition. In equations (1) and
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(3), k is the wavenumber in the fluid medium,

a a
v1 a 5;, + 5;: is the Lapiaclan operator, and the constant a is the

normalised surface admittance. It will be assumed throughout that either
B - o (the plane is rigid) or Re 3 > o (the plane is energy—absorbing).

In the case when 6 - 0, the solution to the above boundary value problem
is easily found, by themethod of images, to be

i l
Goinrol - -ZH§1)(le-EH§1)(kR') (4)
(where R — lr—roll. In the general case. it is convenient to write GB as
the sum

GB - G0 + F5. (5)

By Fourier transform methods, PB is then determined to be [10,5]

1..
i5 exp(ik((y+y )45-5’ — (x-xolsll

PB 2n I 33-55 (31-5i + B) as (6)-

where

Re(vfi-s’). Im(J1-s‘) i 0. . (7)

To obtain an expression for P3 more suitable for calculation, the
substitution 5 - sine is made to remove the branch point singularities in
the integrand of (6), and the path of integration in the resulting
integral is deformed to the steepest descent path. This leads to the
representation [13.2.9]

PB - Pg” + Pg“ (8)

where a

1::
Pam- Be— ] r” e'Pt fit) dt, (9)

1|

0

p = kR', 7 - cos GD, . (10.11)

(B + (1 + itl7)- - fi— >m) —2i (t-la+)(t-ia_) ' Re‘ 2' ) 0' (m

(B + (1 + itl7) (13)

' fi—-2Ht1—_21(1+B‘7)t - (nary

a* - 1 + 57 x «u—a' «1—7', Re (Ji-B‘) B 0, (14)

524 . Proe.I.O.A. Vol 10 Pan 2 (1933)  



 

Proceedings 0! The Institute of Acoustics

PROPAGATION FROM A LINE SOURCE ABOVE AN IMPEDANCE PLANE

(BM-3*) emu-3+), if In a < o and Re a+ < 0,

Pg" - mam-5*) emu-9+), if In 3 <0 and Re a+ - o, (15)

0 . otherwise.

Provided the function fit) is a smooth, slowly-v ying function on the
positive real axis, the representation (9) for PE is very suitable for
numerical lntegrat on. In fact Gaussian quadrature can be applied with
weight functgo t' e‘P‘. To apply Gaussian quadrature it is convenient
to rewrite P r in the torn

(I') Be” . -5 -3 '
PB - F; [S e {(s/p) ds. (1‘)

0

It is easy to see that, for all values of B and 7,

Re a_ i 1. (17)
Also

Re a+ > 1 -|1-a*|” > it if Il-BI < x. (18)
Thus, if l1-BI < it, fit) is a regular analytic function in In t < )1. Note
also that. from (15) and (18),

r
PB - P; ). it In B a 0 or ll-Bl < ll. (19)

Unfortunately, when 6 and 7 are small (a frequent combination in outdoor
sound propagation)

3* ~ m3 + 7)‘ (20)

and la lies near the positive real axis. Equation (9) is not so suitable
for caTculatlon when this is the case.

To obtain an alternative representation for P , the pole of f(t) at
t - ia+, which causes the difficulty, is subtrac ed. A function g. which

can be shown to be regular in In t < 1 [5], is defined by

e-W‘Ja— (t-ia+)'1. net/a1) > o. (21)
zfi-B'

Substituting for f in (16), using equation (19). and a representation of
the error function (1, equation (7.1.3)]. it is found that, for In B > o,

git) - Ht) -

Be'P Be‘Pu'aU affirm/WE 5+). (22)- —Vi -sP - — I s e (s/p)ds +
a "/5 o g 2‘71-3i

It can be shown [5] that, with the choice of branch cuts made in (14) and
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(21), the right hand side of this equation, considered as a function of B,
is regular in the half-plane Re.B > 0, cut from 1 to +- along the real
axis. From equation (6) it is clear that P5 is regular throughout the
half-plane Re 6 > 0. Hence, by analytic continuation and continuity,
equation (22) holds throughout Re 8 > 0, except clearly at B - 1.

Equations (16) and (22) do not apply if p - 0, and this is an important
case for the application to the boundary element method. Fortunately,
uhen p - o, the integration can be performed analytically [5], giving

 

iB In [a - i/l-B’] a 1‘ 1

211/175: 8 +171-65 ' '
PB(r,r) - (23)

E B - 1n . .

where the principal value of the logarithm ls to be taken.

THE USE OF GAUSS—LAGUERRE OUADRATURE

The representations (16) and (22) are in the correct form for the
application of Gauss-Laguerre quadrature [7]. Thus the following
approximation for P5 can be proposed. From equations (16) and (19), for
Il-BI < K.

-" Be1p “'
PB ~ Pn'"J :- —"—JB 121 EL" HXJ‘n/p). (24)

where n a 1, 1 i m < n, and u n,..., un are the Heights and
all n. ..., xn n are the absci‘ssae of the n-point auss—Laguerre quadrature
rule with ue'ight function 5‘ e's. Values of these abscissae and weights
are tabulated for n - 1. 2. ..., 15 in columns 1 and 2 respectively of
Table II in Concus et ai [7]. Note that x1 1 - if and u 1 - .47, and that
only when m - n in (24) ls the full Gauss-Laguerre qua rature rule being
used.

By applying Gauss—Laguerre quadrature to (22) an alternative approximation
ls obtained. for B y‘ 1. namely .

. Belp(1—a+) l Belp m
P a: P x- —- erfc(e' "ME/a“) + — 2 H 90: /p). (25)B n,m 2/11, + W;- Jul ),n in

Note that the calculation of the complementary error function erfc is
discussed in (12.6], and coefficients of Padé approximants for erfc are
given in Table 2.1 of [5].

It can be shown that f is analytic and bounded in a region including the
real axis if Il—Bl < K. uhlie g is analytic and bounded in a region
including the real axis if IN is bounded and [1—H is bounded away from
zero. In fact it can be shown that [5]
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mm < 25, for (1-5) < % and In t s: . (25)

and similar arguments establish that

Ig(t)i < 90 + Ali-Br”. for IBl ‘ 1 and In t s it. (27)

This feature makes the approximations (24) and (25) complementary. (24) is
suitable for B near 1 and (25) suitable elseuhere.

The remainder of this section considers the errors made in using the
approximations (24) and (25).

(PB—FM) s IPB—Fn'nl + (FM-FM) (23)

and, from (26).
e - x n
'Pn,n'Pn,m' < 109— z "J.n ' (29)

j-m+1

From (26) and standard results on Gauss-Laguerre quadrature [7.8], it can
be shown that [5]

(PB-FM) < 71 (2n))2‘"'3 rim”), for (1—5) < ll, (30)

and that, for an a, p0 > o,

(PB-FM) s on p'“. for Iz-a) < w, p a pa, (31)

where c - o as n - a. For each n, 1:,I depends on n. u, and pa, but is
lndepenéknt of p. a, and 7.

Similarly

Ive-fin,“ s IPB—Fn'nl + (fin’n - finIm). ' (32)

(finlin—fvn'm) < (sin-1 p'”(90+4|1-B|'”)£ um) for [Bl : i. (33)
j-mii

[Pa—fin'nl < (45+:)1—el‘”)n'”(2n)imp-(2W). for )a) s 1, (34)

and, for all a, pa, c > 0,

(PB-BM) : on p'“, for p a 9°, (1-3) a s. IBI i 1, (35)

where on a 0 as n e - with a, pa and e fixed.

The above bounds show clearly that the approximation (24) is more
appropriate for 8 near 1. an; (25) more appropriate elseuhere. Note also

that (30) and (34) show that P n and Pn n are excellent approximations
in the far-field (p - -) even Tf only one quadrature point is used (n-i).
The sum of weights which occurs in the bounds (29) and (33) is usually
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small if both In and n are large. Since the work in evaluating the suns
in (24) and (25) is proportional to m. it is desirable to keep m as low
as possible.

In a FORTRAN subroutine written by the authors the approximation Rm 22
has been adopted for li—Bl > 0.1 and i540 22 for 11-5! < 0.1. For
P40 22 an interesting quantity is '

IFS—$40,22l/I-(i/4)Hélhpil. - (as)

This is the error yhich will arise in the reflection coefficient if it is
calculated using P40 22 as an approximation for P . Estimates of the
maximum value of the Quantity (36) when p is fixed, varies in the range.
IBI ( 0.8, -69° s arg B : 89°, and either 7 - 0 or 0 ( 7 i i, are shown,
for values of p, in Table 1. (To calculate these estimates P3 is replaced
by F 0° 1 "in (36).‘, and (36) is then evaluatedufor IBI - 0.1(0.1)D.8.
arg 81:3—23 (9.9 )89 . 7 - cos 9°, 8 - O (10 )90 .) Note that the range
of B considered includes most vaYues of interest in outdoor sound
propagation. Since

40
z w] n < 1.9 x 10-15 (37)

1-23 ‘

and

(1) -55 -5
l-(l/M)Ho (pil > 0251! p , for p > 9!, (33)

it follows from (32) and (33) that. for- [BI ‘ 0.8 and p > if,

IPB—ifiolzzl/l-(i/Améi)(pH < [PB-flolwl/l-(ih)Hél)(piI+3.4x10'13. (39)
For values of p greater than those shown in Table 11 the maximum value of
the error (36) is found to remain at about 8 x 10' 3, which, taking into
account rounding errors, is consistent with the bounds (35) and (39).

SOME FURTHER FORMULAE

The previous sections have shown how 63 can be calculated accurately. In
the two-dimensional boundary integral equation method for the calculation
of sound propagation from a line source over a noise barrier [4] it is
important also to be able to calculate the derivatives of GB. From (4)
and (5). since

u)- )
"0 (“’“H‘i‘x’wn m

5 H1 (kRHr-rn) + g H1 (kR')(r—rn') + VPB(r,r°). (40)
VGB(r,rD) -= 4 R 4 R.

It follows. basically'from the boundary condition (3), that

a —kB (1)
a PBir,r°) — —2 Ho (9) - ikB P9(r,r°), (41)

while an argument along the lines 'of that leading to (22) shows that

I
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ax Psirmn) - lkB e'P slgn(x—x°l(xe'l”a* ertde'W‘ «a «a?

- n‘lp'”I s'” e'sg'(s/p)ds)

0

J1—7' (B+7+lBt) e"""/E,
9"" ' 7t='-2l (t—la+)(t-la_) ' 2(t-la+)

The Gauss-Laguerre quadrature of the previous section can be used to
calculate GPB/ax, and the similarities between the expressions (22) and
(£2) make it efficient to calculate PB and its derivatives simultaneously.

(42)
where

(43)

An analysis similar to that leading to equations (is) and (22) can be
given for the three-dimensional problem of propagation from a point source
over a plane of admittance B [5]. (For this problem Figure 1 should be
thought of as showing a vertical cross—section through point source and
receiver). In the general case the expressions corresponding to (16) and
(22) are somewhat complex. Some simplification occurs if 7 - 0 (Le. at
grazing incidence). as (which satisfies (2) and (3) as in the 2—D case,
though with V‘ and a now the 3—D Lapiacian and Dirac delta function
respectively) satisfies equation (5) with (it 1-0).

so - —elP/<2nm, (u)

Mk3 e‘Pn‘lp‘” I s""e'5?(s/p)us, l1—al : K.
P o (45a.b)
B I (

fikB e'Pn'Ha'” I s‘k'séis/plds + :3 H§1)(p/1—e’lertc(e""/‘/a 5+).

° an.
where ) (1) '

—Be9(t'1i-l (p(1+it))(1+it)
2“) " I—zl (t-la+)(t-ia_) ' “6’

6m - ht) - lie-Wm} e"P"i‘3’ Hél)(p/l—B‘)(t—ia+)‘1. (47)

am is regular in Im c < l, and, if ll-al < ii. fit) is regular in
In t < ii. The Gauss—Laguerre methods of the previous section should be

used to evaluate the integrals in (45). The representations (45) may

prove useful for the numerical solution of the boundary integral equation

[9,5] describing propagation from a point source above an inhomogeneous

impedance pi ane.

CONCLUSIONS

Accurate and efficient approximations (equations (4). (5), (24) and (25))

for calculation of sound propagation from a line source above a

homogeneous impedance plane have been described and analysed. The
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approximation based on equation (25), with n - 40 and m - 22. has been
shown, by theoretical analysis and systematic calculations, to be accurate
for all angles of incidence. and for a range of surface admittance which
includes those values usual in outdoor sound propagation. High accuracy
ls retained even when the distance between image and receiver is as small
as 1/10 wavelength.

Similar approximations have been outlined for calculating the spatial
derivatives of the solution for propagation from a line source, and for
the problem of propagation from a point source over a homogeneous
impedance plane at grazing incidence.
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Table l. The estimated maximum error, over the ranges of B and ‘Y iniiii'catedJ

in the reflection coefficient, when it is calculated by using qulzo as an

approximation for PS. '

IBI<OB,—69°<arg3<89°

10-7
10—8
10-1“
10-12
10-13
10-‘3

 

Figure 1. Geometry of source and receiver above impedance plane
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