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INTRODUCTION

An important method of locating signal sources involves the estimation of Time
Delay Differences (TDDs) for a signal received at pairs of spatially separated
sites. Most related research has emphasized the characterization and
optimization of TDD estimation in the context of two receivers. Locating a
source in multidimensional space requires more than two receivers, and TDD
estimates will be correlated whenever there is a receiver common to two Or more
receiver pairs. When characterizing the performance of such systems it is
important to incorporate the covariance between the TDD estimates. This is
especially true when the linear constraints implicit in the source/receiver
geometry are used. Their explicit incorporation in TDD estimation involves the
enforcement of the condition that the three TDDs obtained for each receiver
triplet sum to zero [1, 2]. This procedure, aside from reducing the TDD
variances, can simplify the geometrical portion of the problem.

This paper develops expressions for the covariance between TDD estimates and
applies these to realize a more general model for characterizing performance.

TDD VARIANCES AND COVARIANCES

The concept of the generalized correlation method for TDD estimation was
introduced by Knapp and Carter [3]. It was shown that many delay estimation
algorithms can be thought of as different prefiltering strategies for the two
signals to be cross-correlated. It was also shown that maximum likelihood (ML)
prefiltering can be used if Gaussian statistics are assumed. By rearranging
the result given in [3], the variance of a TDD estimate, ﬁi, corresponding to
the i-th site pair (k,m), for stationary real signals is given by

. [ (e Wi(£)ug(f) df
var[D;] = 2 (1)
21/ (2v £)? W (£)64(£) df]?
o]

where T is the observation time, G (f) is the power spectrum of the signal,
W;(f) is the real cross-spectrum weighting function for the i-th site pair, and

U, (£) & G (£)G, (£) + Go(£)Gy(F) + G (£)6,(£) )

where Gy (f) and Gm(f) are the noise power spectrums at sites k and m
respectively. When ML cross-spectrum weighting, given by

Wy (£) = Gg(£)/U4(£) 3)
is used, then (1) redugss to
~ 2 -1
Var[Dylyp = (21 [ (2n£)? vy(£) df] (4)
where °
by (6) & E(E)/u (D) (5)

This wi(f) function can also be computed as

Proc.l.O.A. Vol 7 Part 4 (1985) 33



Proceedings of The Institute of Acoustics

APPLICATION OF GEOMETRIC CONSTRAINTS

(6 = cy()/(1-¢;(£) )
where Ci(f) is the magnitude squared coherence (MSC) function, and is easily
estimated using standard FFT techniques [4]. It was also shown in [3] that (4)
is the Cramer-Rao lower bound (CRLB) for the variance of a TDD estimator. Thus
the generalized real cross-correlator can achieve optimum performance for real
signals. In practice the performances indicated by (1) and (4) hold true for
real baseband signals but not for real RF signals, because of peak ambiguities
and decorrelation in the RF phase from site to site. If the RF signals are
assumed to have fixed but unknown and uniformly random relative phases then the
ML TDD estimator locates the peak of the magnitude of the complex eross-
correlation between the complex baseband equivalent RF signals. 'Using a
derivation very similar to that in the Appendix, it can be shown that a
reasonable approximation to the variance of a TDD estimate involving RF signals
is given by 5] :

[ [2n (g-£) ]2V (D), (£) df
Val’.‘[’Di] = = oe) (7)
— 2
2 [ [2n (£-£,)]2W;(£)6(£) df]
with - - w
£,= [ [ £ (66 (£) dE]/[ [ W (£)6,(£) df] (8)

where T is the observation time, G _(f) is the power spectrum of the complex
baseband equivalent RF signal, W.(f) is the real cross—spectrum weighting
function for the i-th site pair, and U,(f) is as defined previously in (2) with
the noise power spectrums also being complex baseband equivalents.

With ML cross-spectrumn weighting, given by (3),equation (7) reduces to

var[D,],; = [2T [ [2n(f—¥i)]21pi(f) df]—l 9)
with . T
= [ [ £v;06) ag]/[ [ vy(E) af] : (10)

where §, (f) is as defined in (5). Notice the similarities between results (7)

and (9) for complex baseband equivalent RF signals, and results (1) anq (4) for
real baseband signals. The major differences in the formulas for RF signals are

that the integration is now two-sided and the frequency weighting is shifted to
the centroid of the signal power spectrum. The CRLB for RF signals is alsq
known [6, 7], and is exactly that given in (9) and (10). Thus the generalized

complex cross—correlator can also achieve optimum performance .

In order to properly model a TDD covariance matrix we must also know the
covariance between TDD estimates. The covariance between two TDD: estimates, ﬁi

and D;, for site pairs (k,m) and (k,n) respectively, has been derived in the
Appenﬁix for RF signals, and is given by
[

3 [ (2m )2 (£-£ ) (£=£ W3 (EIW5(£)6g(£)G (£)AE
Cov| Di,Dj] = = (1)

2r{ [ [2n (£-£)]2w; ()og(Drag}{ [ [2m(£-£ ) ]2W (£)6g(£)dE}

ﬁuﬁ 8
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where f, and f, are as defined in (8), G_(f) is again the power spectrum of the
complex basebaﬂd equivalent RF signal, W;(f) and W;(f) are the cross-spectrum
weighting functions for the i and j site palrs respectively, and G (f) is the

power spectrum of the complex baseband equivalent RF noise at the k—th site.
Note that the k-~th site is the shared site and is the first site in both pairs.

If the shared site is first in one pair and second in the other pair then the
only effect is to make the covariance negative. It has been assumed that the
noises at each site are uncorrelated, in which case, if there are no shared
sites, the covariance is zero. This result assumes arbitrary cross-spectrum
weighting and thus also holds when ML weighting is used for each TDD estimate.
The covariance formula for real baseband signals is essentially the same with f
and f equal to zero, and the integrals going from zero to infinity.

As an example, and also as a model for the results presented in the following
sections, if we assume white signal and noise RF processes with ML cross-

spectrum weighting (i.e. constant over the signal bandwidth) then the variances

of, and covariance between, two delay estimates, ﬁi and ﬁj’ corresponding to
site pairs (k,m) and (k,n) respectively, evaluate to

Var[Bi] = B[Yk +'Ym + YkYm] g BYkm (12)
D] =8y +v, ] &8y (13)
Cov[ By 53] = BYk (14)

where‘yk, Yo and‘Y are the noise-to-signal power ratios (i.e. 1/SNR) at sites
k, m, and n respectlvely, and the scale factor, 8, is given by

B =3/(2n2TB3) , (15)

where T is the observation time, and B is the RF signal bandwidth. Note that
the variance expressions in (12) and (13) are equal to the CRLB for this model.

TDD VARIANCE REDUCTION WITH CONSTRAINED ESTIMATION

When estimating the TDDs it is useful to incorporate the constraint, based on
the distance difference geometry, that the 3 TDDs, for each set of 3 receivers,
sum to zero (with appropriate signing). First, consider the simple case of only
3 receivers, 1, 2, and 3, with 3 receiver pairs (1,2), (1,3), and (2,3), which
we will denote as palrs l, s and 3 respectively. Then the following single
constraint applies: D -D = 0. This constraint can be expressed in
matrix form as RD=0, wherezﬁ is the column vector of 3 delay estimates, and

R—[l -1 1] With 4 receivers, 1, 2, 3, and 4, there are 6 pairs, (1,2), (1,3),
(1,4), (2,3), (2,4), and (3,4), which we will denote as pairs 1 through 6
respectively. For this case there are 3 independent constraint equations, which
again can be expressed in matrix form as

1-1 0100

1 0 -1 010 (16)
01 -1 0 0 1

Similarly, with 5 receivers there are 10 possible TDDs with 6 independent
constraint equations.

KD = 0, with R =

The formulation and solution to constrained least squares estimation is well
known for spherical (or uniformly orthogonal) perturbations fS . These results

can be readily extended to generalized constrained least squares estimation [2],
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and when the constraint is of the null form of (16), the vector of constrained
TDDs and corresponding covariance matrix are given by

D¢ =D - ¢D (17)

cC = C - GC (18)
with 4

¢ & crE(ReRY) R (19)

"o (L1}

where the superscripts "c¢", “t", and "-1" denote constrained estimates, matrix
transpose, and matrix inverse respectively. Note that the constrained TDDs and
corresponding covariance matrix are expressed in terms of the unconstrained

TDDs and corresponding covariance matrix minus a correction term. Assuming

white signal and noise spectrums over RF bandwidth B, the unconstrained covariance
matrix can be easily constructed using equations (12) through (15). For the 3
receiver example above, the unconstrained covariance matrix is given by

Yi2 Y1 Y2
C=81Y1 Y13 Y3 (20)

Y2 Y3 Y23

The unconstrained covariance matrix can be similarly constructed for an
arbitrary number, K, receivers. One measure of the improvement with constrained
estimation is the reduction in the variance of the TDD estimates. If we assume
that the signal-to-noise ratio (SNR) is the same at all K receivers (that is
Yk=l/SNR and’Ykm=2/SNR+1/SNR?.for all k and m, k¥m), then the variance reduction
factor (VRF) is the same for all K-choose~2 TDDs, and is given by

VRFy = 2K SNR + 2 1)

2K SNR + K

This formula has been algebraically confirmed for K=2, 3, 4, and 5 receivers,

and is conjectured to hold in general for K*>2 receivers.

Figure 1 plots the VRF for SNRs in the range -20 dB to +20 dB, and for K=2,.3,
4, 5, and 6 receivers. As expected the variance reduction is seen to be quite

small for good SNRs, but can be significant at low SNRs. A lower bound on the
VRF is 2/K and is obtained only for independent TDD estimates.

GEOMETRY IMPLICATIONS

A reduction in the TDD variances does not translate directly into a proportional
reduction in the location error since the entire covariance matrix is not
reduced by the same proportion as the diagonal elements. Further, in practice
the SNRs will depend on the transmitter location relative to each intercept
site. Thus, the improvement with constrained estimation is strongly geometry
dependent.

In [9] it is shown that the NxN location covariance matrix, C
location estimate in N-space, can be linearly approximated by

e = (6tcle)!, withc4 lar (22)
where C is the IXI TDD covariance matrix for the subset of I site pairs
selected, and c is the signal propagation speed. The IxXK H matrix defines the
site pairs used, where K is the number of sites. The i-th row of H,
corresponding to the i-th site pair (k,m), contains a 1 in the k—th position, a
-1 in the m—th position, and zeros elsewhere. The k-th row of the KxN F matrix
is a unit vector pointing in the direction of the transmitter from the k-th
site. The root-mean—square (RMS) location error is then given by

36
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Og = (trace(Cx))% (23)
The noise-to-signal ratio at site k, Y,, required for comstructing the TDD
covariance matrix, C, can be modelled using

Yy = (4 ) /SNR
where d, is the distance from the transmitter to the k—-th site, and SNRO is the

reference SNR for a reference distance of dy=1. This 4-th power propagation
model is often a good approximation for VHF ground communications.

(24)

The RMS location error performance is presented in Figures 2 and 3 for two
different geometries and SNR, = 5 dB. The approach taken is to plot contours of
fixed relative RMS location errors in the x-y plane. The relative RMS location
error is defined as 0,=0 /oo, where o is the fundamental ranging error for
the reference distance dk=f, and is given by o% = CZB/SNRO. Figure 2 presents
the results for 3 sites, 1, 2, and 3, located at (0,1), (-.866,-0.5), and
(.866,-0.5) respectively. 1In both (a) and (b) only site pairs (1,2) and (1,3)
were employed. Figure 3 presents the results for 4 sites, 1, 2, 3, and 4,
located at (0,1), (~1,0), (0,-1), and (1,0) respectively. In both (a) and (b)
only site pairs (1,2), (1,3), and (1,4) were employed. These figures demon-
strate a reduction in the RMS location error as shown by the expanded contours
when constrained estimation, using all the TDD s, is performed prior to solving
for the transmitter location. For many locations the RMS location error is
reduced by more than a factor of 2, which is equivalent to increasing the obser-
vation time by more than a factor of 4. It should be noted that the performance
in (a), without constrained estimation, could have been improved by employing
more than just K-1 site pairs. However, this would increase the dimension of
the matrices involved in the geometry portion of the solution, and could intro-
duce a singular TDD covariance matrix, C. This is especially true if some of
the sites have high SNRs. The constrained estimation approach does not require
that the C matrix be non-singular, and thus does not suffer this problem.

T I T 1 1 T

K=2

VRF

1 } 1 -

1 1 3 L
~20 -15 ~10 -5 0 S 10 13 20
SNR (dB
Figure 1: TDD Variance Reduction Factor Versus SNR for K Sites.
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Figure 2: Constant RMS Location Error Contours for a 3-Site System (SNR =5 dB)
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(a) Without Comstrained Estimation (b) With Constrained Estimation
Figure 3: Constant RMS Location Error Contours for a 4—Site System (SNR°=5 dB)
APPENDIX - COVARIANCE BETWEEN TWO TDD ESTIMATES

_ For complex signals with fixed and uniformly random relative phases, the TDD is
estimated by locating the peak of the magnitude of the generalized complex

cross—correlator output,'ﬁ(T), where the ~ denotes a noisy estimate. Assume
that we have estimators 1 and 2 which correspond to site pairs (k,m) and (k,n)
respectively. That is, the 2 estimators share the signal from receiver k. Using
the discrete Fourier coefficient representation,
N
'ii(T) = 3 wi(njéi(n)exp(jZHnAr) A, i=1,2 (A.1)
n=-N
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where A =1/T is the fundamental frequency, T is the observation time, wi(n) is
the real cross—spectrum weighting for the i~th receiver pair, and ﬁi(n) is the
computed cross—spectrum for the signals received at the i-th receiver pair.

Locating the peak of [ﬁ(T)l is equivalent to locating thvroot of thﬁ first
derivative of IR(T), near the peak. If excursions of ——1R(t)| from<E—-E[|R(T)l]
T T

at T =D are almost entirely confined to the linear region of %?E[lﬁ(r)l] near
T = D, then the covariance between TDD estimates 1 and 2 can be approximated by

o _E[(a§14§1(T1)“ ESIE[lil(Tl)‘]) g;;Jﬁz(Tz)l' g;;E[liz(Tz)l])] (A.2)
corlBr.2 (e %, (& 2l %y 0] ) 7D,
a7 e G =L Ry aeDs

Here we introduce the approximation

[Ry ()] = Re[Ry(r)exp(=365 (1)) 2 Ay, 1 = 1,2 (4.3)
Equation (A.3) is accurate to within a factor of cos($i(1) - ¢i(T)) where 31(1)
and ¢i(1) are the phases of'Ri(T) and Ri(T) respectively. Clearly, for good
SNRs and/or long observation times, $i(1) will be close to ¢i(T) and
approximation (A.3) should be quite valid. Employing approximation (A.3), (A.2)
becomes

d d d d
E| ((—— Ay - — E|A — Ay — A A.4
[ | [(d'rl 17 G [1]>(de 2" G0y E[A,])] (A.4)
COV'D ,‘D = 2 2 =]
1°72 (j—T{E[AI])(g%-E[AZ]) :}’;;

Letting superscript (n) denote the n—th derivative we have

Lay = re RV (dexp(-305 (1)) + Ry exp(-303 D] 49
ST B[4,] = Re[R{D) (x)exp(=30, (1)) + RB; (Dexp(-3b; (1) (-1 (T)]  (4-6)

Substituting (A.5) and (A.6) in (A.4) we obtain the following expressions for
the numerator .

num = E[ Re[B{+C;] x Re[B,+C,]] = . E[ (By+B4+C +C4) (B, +BH+C,+C3)]  (A.7)
with

B, & @M () - R (r))exp(-3p;(r)) , i=1,2 (A.8)

c; & @) - Ry )exp(=305 (1) 1e P ()), i=1,2 (A.9)

Multiplying out the cross terms in (A.7), substituting (A.l) in (A.8) and (A.9),
and taking expected values, we find that E[Ble], E[Blcz], E[BTB?], E[Bij],

E[CBy], E[C1Cy], E[C¥BS], and E[C¥CH] are all zero. For E[B;B%] we obtain,
after considerable algebra,

E[B;B%] = [ W (n)W,(n)(2mAn)2G (n)G, (n) %T (A.10)

n
where Gk(n) is the noise power spectrum for site k. For T large (A = 1/T
small), equation (AQ%O) becomes

_ 1
E[B,B%] = T / (21rf)Zwl(f)Wz(f)Gs(f)Gk(f) df (A.11)
=00
with the obvious discrete to continuous correspondences. Similarly, we obtain

(evaluated at T, = D1 and T, = DZ)

>
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sleics] = of @050 £ _Z Wy ()W (£)G 4 (£)6y (£) df (A.12)

E[B;cs] = E[B§C,] = =5V (0y) %  @reu (W06 (6 (D) df  (4.13)
and -

B(cym3] = E[cgB,] = {0 1 [ @O (DU (£)6, (06, (£) df (A1)
It is easily shown that [ 5]

PO &L o, = 2mEy , 171,2 (A.15)

where T, is the average frequency of the i-th weighted signal power spectrum, as
defined in equation (8) of the main text. Substituting these results in (A.7)

gives the following expression for the numerator of (A.4).
[~

mum = 2 [ (P (£ ) (E- £ W (D)W ()G (E)Gyc(£) df (A.16)
-0
The denominator of (A.4) is straightforward. The required derivative formula is
[+
2 -
Eowla]] = Slemee) PuiD)6g(f) af , i=1,2 (A.17)
dTi Ti" i 0. .

Substituting (A.16) and (A.17) into (A.4) yields the covariance as given in
equation (11) of the main text.
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