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1. INTRODUCTION

The efficient representation of room acoustic frequency response functions can
be difficult in the frequency range where too many modes are excited to be
accounted for individually, but they are not excited in sufficient number to
enable the application of statistical methods. However in this "mid frequency"
range, there is a tendency for "bunches" of adjacent individual room resonances
to form reasonably well defined"Clump§'of modes, with each clump exhibiting
the characteristics of an individual second-order system [1]. This paper
describes a preliminary investigation of the possibility of exploiting this
feature in providing a computationally efficient representation of room
acoustic frequency response functions. work has been undertaken in order to
establish the extent to which a multi-degree of freedom system may be
adequately described using a model of significantly lower order. This lower
order model has thus been chosen in accordance with the number of "clumps"

‘ of modes in a given frequency range, rather than in accordance with the
total number of individual room modes. The work presented below firstly
describes the theoretical background to the approach used. This involves the
representation of the reduced order model with an IIR (infinite impulse
response) digital filter whose coefficients are determined to give a "best
fit" (in the least squares sense) to a measured output time sequence.
Experiments are described in which the frequency response function (relating
"output" pressure to "input" source volume velocity) in a reverberant room
is measured accurately using conventional transform methods. These results
are compared to the frequency response of the reduced order model derived
from a considerably smaller number of samples of the input and output time

'histories. The results are sufficiently encouraging to indicate that a
computationally efficient representation of the room acoustic frequency
response function may well be feasible. A practical means of "system
identification" of this type will very often be a prerequisite for any attempt
to control or influence the nature of an enclosed sound field using digitally
based electronic techniques.

2. THEORETICAL BACKGROUND

The complex pressure p(§.u) at a position 5 in a lightly damped enclosed

sound field is produced by a point source of strength q(z,u)e1“c at a position
x. The solution for the pressure can be expressed in terms of a spatially
dependent "transfer function" such that

My») - H(§.z.w)q(z.m) (1)
where the theory presented by both Pierce [2] and horse [3] shows that the
form of this transfer function can be written as  Proc.l.O.A. Vol7 Fonz (1985) I 155
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= ‘ , c rwhere An (0°Co /V)wn(§)wn(z) Thus, on, n are the natural E equency and

damping of the second order system representing the response of each mode
having a normalised characteristic shape function w“. The density and sound

speed of the medium are given by on“:o and V is the volume of the enclosure.

Thus the room response is considered to consist of a superposition of N
second order responses. The corresponding impulse response can thus be
written as

N - t _ x
h(£,£,t) = E cne d“: + c e d“ t (3)

n=l “

 

where the complex coefficients on,dn can be deduced in terms of mn,L1 and An

for each mode in the series for given values of x and z.

A digital representation of this impulse response can be deduced using the
principle of the impulse invariant transformation (see Rabiner and Gold [0]).
Thus if the equivalent continuous impulse response (3) is sampled at integer
(k) multiples of the sampling period T,then one can write

V d h *

[cne “kr + c e d“ H] (’4)h(5.x.kT) = i n

The corresponding z-transform of this sequence is given by
n=l

“ N e- g _ v _
“(5,z,z) = E E c e dnkr + c e d“ “T L k (5)

keo n=l n n

and since the order of the summations can be interchanged and assuming a
stable impulse response, evaluation of the z-transform (see reference [4])
results in

N -l
t

“51.2) = r bno bn1z (6)
n=1 -1 -Z

l ‘ an1z + an2z

where the coefficients one, bnl, a are purely real numbers which cana
n1' n2

again he expressed in terms of on. t“ and A“ for each mode in the series for

given values of 5 and z. The summation (6) can be expressed in the still
more general form

-1 -2 _ -(2N-1)H(£‘xlz) = b0 + b1: e b2: ... b(2N 1):
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where the real coefficients (hn ... bud, armam), are now given in terms
of terminations of lung“, An of the BI modes in the series. These coefficients
will thus again also depend on 5 and z. This therefore constitutes a
(2N,2N-l) order All)“ (autoregressive mving average) nudel which is the
natural counterpart to the continuous time model consisting of N parallel
second order system. The equivalent sampled pressure signal Mid) and
volume velocity signal 110:!) are related by the corresponding difference
equation.

3. TIE REDUCED ORDER l‘DDEL

The purpose of this work is to achieve a good representation of the actual
sampled pressure signal pa(kT) when these values and the actual sampled
volmne velocity signal qa(k'r) are used to deduce the "output" pm(kT) from an
ARM model of the actual system. Purthermre the order, 23; say, of this
model is to be determined by the number H of "clumps" of modes rather than the
total number N of individual mdes. Thus the del output sequence pm(kT) is
deduced from the actual output and input sequences via the difference
equation

pmflt'l'): —a1pa((k-1)T) - azpa((k-2)T) . . . az‘pa( (k-Zm'l')

 

+ hlqa( (k-l) '1‘) 1' I:qu ( (it-2) T) . . . hzn_lq3( (k-ZMOIYI‘) (8)

where the coefficients of this am mdel can be specified by the parameter
VECCOX'

g = [av 32, ... um. 51. hz .... bm_l]r

flaw note that the error 2(kT) between the actual sampled pressure signal and
the mdel output can be written as

:(m - pica) - pmfld‘) = pa(kT) - for): (9)
where the vector 50:1) is given by

501'!) =[—pa((k-l)'r) ...-pauk-m'r). «flak-1m gull-230911-
‘l'his error can he'evaluated over 1. samples of the actual and model output
pressure signal such that the L'th order error vector is given by

S = 2‘ - 24 (10)

where a = [c(k'l‘), :«mm :(mmflr,
5 - [gum gaunt) 5((k+L)T)]T.

and 33 a [pa(kT). paumm pa((k*l.)1')]r_
He now choose _a_ in order to minimise the sum of the squared errors given by

51.5. The solution which minimises this quadratic function of the vector 3

PmrJDA V017 Part2 (195) 157  
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follows from equation (10) and is given by

T 1-1 T
so [2.21 2.2a (11>

Clearly the deduction of 90 requires the inversion of a matrix of potentially

very highorder. However, the form of the matrix 575 is such that the optimal

vector so can be deduced recursively (at successive time samples) using the

"Recursive least squares" (RLS) algorithm [5]. This approach was taken in

the work described below using sampled data derived from signals proportional

to the pressure and volume velocity when a reverberant room was excited by a

loudspeaker driven by a white noise input. The equivalent frequency response

function (in modulus and phase) associated with the model described by the

parameter vector go was then compared with the "actual" frequency response

function measured using conventional transform techniques on a considerably

larger number of data samples.

4. EXPERIMENTAL RESULTS

The initial choice of model order was found to be very important in this work,

as two model coefficients are necessary and sufficient to describe one second

order system (e.g. mode. or hypothetically, clump). For the experiment, a

model order of M=B was chosen as being sufficiently high to have a chance of

matching system behaviour yet sufficiently low to be readily computed.

The input signal was the output of a laser vibrometer which measured the

surface velocity of an eight inch speaker excited with white noise. The room

response was measured with a microphone near the opposite corner of the room.

Both signals were passed through a digital antialiasing filter before being

sampled, initially at 2000 Hz. The reference transfer function used was

that found by averaging 500 Rho-point Discrete Fourier Transforms. As shown

in Figure l. for low frequencies and modal densities, the model can be a

reasonably good match, only failing noticeably in the noise below 60 Hz.

This model was produced by filtering to cut off frequencies above 200 Hz

and resampling at AGO Hz. Note that this model was produced using the RLS

algorithm operating on only 1600 data samples (a factor of over 250 smaller

than the number of samples uSed in deducing the reference transfer function).

There is certain to be aliasing at such a low sample rate, but where model

poles and zeros are so few it is better to ensure that they are all in the

range of interest.

Of more note is Figure 2, which shows results in the middle frequency range

containing distinct mode "clumps". Despite containing more resonances, the

600-650 Hz band shown here appears smoother and is better matched by the

AREA model than in the 0-200 Hz band. The phase response does not at first

seem as promising as that of the modulus. but if the considerable accumulated

0-b00 Hz system phase trend is compensated (as shown in the figure) a

reasonably good match results. The progressive phase trend of the model over

this frequency range "falls behind" the actual systemphase by A! radians.

This however, has resulted from a model having 8 modes being used to match

a system having52 modes over this frequency range. Ofimportance is that

168 Proc.|.O.A. Vol7 Part2 (1585)  
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the system contains roughly 10 to 12 "clumps" of modes. Other preliminary
results have indicated that provided the model order matches the number of
clumps, then the phase trend of the model over a given frequency range is
very similar to that of the actual system. To achieve the results of
Figure 2, some re-ssmpling of the data was required. Faced with the same
need (as in the lowpass case) to concentrate the model on the range of
interest. the small undersampling used before is ineffective in the 0-400 Hz
region. Sampling at only 100 Hz, however, produces a simple spectrum
mapping (reference [6] discusses theory and details) which overlaps the
range of interest and the (0-; sampling frequency) model range using multiple
aliases. The resulting model used £00 data points, over a loco-fold reduction
from the reference transfer function.

5. CONCLUSIONS

The work to date indicates that a model of significantly lower order can
produce a reasonable approximation of system behaviour. The explanation of
why clumps behave much like individual resonances is not altogether clear,
though Lyon‘s work [7] on phase trends in multi degree of freedom systems
seems relevant in view of the slower phase progression at clumps, where the
individual modes appear to be reinforcing their neighbours. Certainly for the
purposes of implementing active noise control for example, using digital
filters, the prospect of using lower-order filters whose coefficients may be
determined quickly and from a small number of data points looks reasonably
promising. Work planned for the near future includes incorporation of a
progressive phase delay into the model, in an attempt to model more nearly the
rapid system phase progression. particularly at low frequencies. Whether the
problems of using what is known to be an approximate method can be overcome
sufficiently to allow practical application remains to be shown.

ACKNOWLEDGEMENTS

S.P. Hough wishes to thank the Marshall Aid Connemaration Commission for the
scholarship which supports this research. P. Davies gratefully acknowledges
the support of the S.E.R.C., as does P.A. Nelson, who is supported under the
Special Replacement Scheme.

REFERENCES

l G.M. Dodd. 'Assisted Resonance and room acoustics in small auditoria',
(PhD thesis). (1972).

2 A.D. Pierce, 'Acoustics: An introduction to its physical principles and
applications'. McGrawrflill. ~

3 P.M. Morse, 'Vibration and Sound, second edition‘, McGraw-Hill, (1978).
h L.R. Rabiner and 3. Gold, 'Theory and application of digital signal

processing', Prentice-Hall. Inc.. (l975).
5 P. Davies. PhD thesis. Southampton University (In preparation).
6 J.M. Tribolet, 'Seismic applications of homomorphic signal processing',

Prentice-Hall, Inc., (1979).
7 R.H. Lyon. 'Range and Frequency dependence of transfer function phase',

J.A.S.A., Vol.76, no.5, 1433-1437, (1984).

Proc.l.0.A. Vol7 Part2 (1985) 169  



 

Proceedings of The Institute of Acoustics

DIGITAL MODELLING OF ROOM ACOUSTIC FREQUENCY RESPONSE FUNCTIONS

 

Fig 1(a)

Moduli of
under (+++)

and reference

(—) transfer
functions.

+24
J
J
H
u
i
v
L
U
J
M
l
q
u
u
fl
d

  

40 50 120 160 ZOO

Frequency. Hz

Fig 1(b)
Phase of model

(---)
and reference
(-) transfer

  

  

 

functions.

0 Frequency, Hz 200

i?

7 Fig 2(a)
"‘T—"E xi\ i;r“!$\ri3‘lx
ZOdB ix“; K {J . )mduli of model

_ I ; (*i*)

__J-_.1' K and reference

§ ‘ (-) transfer
1 functions.

§

' “" ’ ~ I I
400 610 420 430 440 450

170 Proc.l.O.A. Vol? Part2 (1935)  



  

Proceedings of The Institute of Acoustics

DIGITAL MODELLING OF ROOM ACOUSTIC FREQUENCY RESPONSE FUNCTIONS

33"

JAN

. 35"

Phase, 35"
radians 37“

38"

39w

A0"

AIR
42w

 

A00 Frequency, Hz

Fig 2(1))

Phase of model-32w radians (-')
and reference (-—) transfer functions.

Proc.l.O.A. Vol7 Part2 (1985) 171

  



  

Proceedings of The Institute of Acoustics

 172 Proc.l.O.A. Vol7 Part2 (1985)

 


