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1 INTRODUCTION

SONAR transducers [},2,3] are used for radiating and receiving underwater sound
waves fn SONAR systems. Different types of transducer are used depending on the
applicaticon, There are many transducer design factors which need to be considered
in relation to the overail design of the SONAR system. Magnetostrictive and
piezoelectric transducers are 1imited to simple shapes, whereas electrostrictive
ceramic materials, such as barium titahate {BaTi03) or lead zirconate titanate
{P2T), ¢an be readily moulded into desirable forms and so are almost exclusively
used in underwater acoustic applications.

It is clearly necessary to develop models of the transducers so that the designer
is able to meet specifications. These models are inherently either analytical
or numerical in character. The main advantage of numerical methods, such as the
finite-element method {FEM}, over analytical methods, such as equivalent circuit
modelling, is that truly 3-dimensional dynamics can be properly studied. The
main aim of this paper is to outline the development and validation of a
piezoelectric "brick* finite-element as part of a program to develop software
for SONAR transducer design. :

2 EXPERIMENTAL RESULTS

Let us first consider the steady-state frequency response of two simple SONAR
transducers made of PZT4; a bar and a ring. These have been studied in order to
easily compare theoretical results with experimental results. Fig.1(a) shows the
admittances of the bar transducer for different freguencies from zero Hz to 60
KHz. The magnitudes of the admittances were measured in air by an impedance
analyzer [HP modei 4192A LF). The x-axes (frequency axes) are 1inear while the
y-axes are expressed on a log scale., Fig.l(b) shows the magnitudes of the
admittance response in greater detail around the fundamental resonant frequency
{f.)- The Q-factor of the bar transducer in air is about 623. It showld be noted

that the ratio of the third and the fundamental resonant frequencies (fs+ f.)

is about 2.91. Fig.2 shows the admittances of the ring transducer. The Q-factor
of the ring transducer in air is about 667.
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3 SONAR TRANSOUCER MODELLING

The basis of the linear modelling of a SONAR transducer is the piezoelectric
equations ,i.e. a pair of coupled electro-elastic equations which govern the
effects of the piezoelectricity.

For the stress [o] = (Clle] - [e,](£] (1a)

For the charge density [q] = (e, )'[e] + [€][£] (1)

where brackets represent matrices, and the superscript t represents the transpose
of the matrix. The coefficients may be arranged in a 9x9 symmetric matrix.

The electric circuits representing the transducer characteristics are limited
to one-dimensional applications. Details of the equivalent circuits and their
components are given by D.A.Berlincourt et. al. [4].

FEM has proved to be a powerful numerical technique for solving problems in which
the electric field couples to the mechanical stress and strain [5,6,7]. It has
flexibility in that it can be used to model any arbitrary geometry and characterize
any given property of material. The effects of structural damping and fluid
radiation can be progressively added to the primary computational program.

Three approximations are applied to the FEM and the accuracy of the numerical
solution depends on the degree of each approximation. Firstly, the bounded domain
of a given structure is divided up into a finite number of smaller elements.
Each element is specified by a discrete number of nodes within the element or
on its perimeter. Secondly, the variable in the piezoelectric equations at a
point within an element or on its boundary is approximated throughout the element
by interpolation between the nodal values [8]. The functions of a co-ordinate
systemwhich define the interpolation are called element shape functions. Thirdly,
the volume integration of the piezoelectric equations is implemented numerically
for each element by means of the Gauss-Quadrature approximation [10]. 20 nodes
for each hexahedral element have been isoparametrically {nterpolated by the
parabolic shape function of the Serendipity family [9]. As the whole bounded
domain is reduced into subelements of a far smaller size, and as the elemental
integration of the piezoelectric equations is accomplished with a larger number
of Gauss points, the results of the FEM solution for the piezoelectric equations
become more accurate.

The finite element equations for the dynamic piezoelectric structural system are
given by

(F,] = [Kullal + [K,)[$] - wiMlla} + jw(Ri[e] (2a)
-[Q] = (K, la) + [K.,l¢] (2b)
where [ F ,] represents externally driven forces, [Q]represents externally driven
charges, and [a] represents nodal displacements, [¢] represents nodal electric
potentials. The element matrices of [K..) [Kuod [Koud [Kuls [M), [K] are

defined to be elastic stiffness matrix, piezoelectiric stiffness matrix, inverse
piezoelectric stiffness matrix, dielectric stiffness matrix, mass matrix and
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dissipation matrix respectively. Material data for each element is represented
by the element matrices. Details of isoparametric derivation of element matrices
are presented by H.A1lik et. al. [6].

A note should be added concerning elements near the boundary which are subject
to a constant pressure drive. If only a plane pressure §s considered, the external
pressure should be distributed inte each node on the boundary surface in terms
of nodal forces. A nodal force normal to the boundary surface is derived by
surface integration [10,11]:
F' = N'pds
‘l
where M’ is the shape function of the corresponding node, A° is the force-driven

bourdary and p is the constant external pressure on A°. For the parabolic shape
function of the Serendipity family, the typical ratio between the normal forces
on the corner node and on the midside node is -1:4. The nodal forces overlapped
by adjacent elements are simply summed.

A1l the element matrices over the whole domain are systematically combined into
global matrices and the assembled global equation is solved to evaluate the set
of unknown nodal values (e.g. displacement vector and potential scalar). The
assembly of the system matrices requires consistent nede or element ordering.
The equilibrium conditions are modified according to the prescribed boundary
conditions [12]). That is, the equivalent representation of an equipotential
surface need the transformation of the assembled global coefficient matrix, It
is done by adding 211 affected rows and columns to the one row and column selected
to represent the equipotential surface and then deleting them from the global
matrix. Also, another transformation of the assembled coefficient matrix is
associated with the representation of clamped boundary conditions. This is done
by deleting all affected rows and columns from the global matrix since the
displacement normal to the clamped boundary is assumed to be zero. The second
matrix transformation is particularly useful for the FEM modelling with geometric
symmetry. Gauss-elimination technique or Gauss-reduction technique [13] are used
for solving the assembled equation of system matrices. Use of the element shape
functions together with these nodal values then enables the unknown physical
variables te be determined throughout the whole domain.

4 RESULTS AND DISCUSSION

It is difficult in practice to measure all the three-dimensional material
parameters of PIT4 (coefficients in equation 1}. Since the measured parameters
from the experimental transducer models are insufficient for the three-dimensional
FEM models, the manufacturer’s properties for PZT4 ceramics have been used for
the theoretical models (refer [4]).
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Fig.3 compares the measured frequency response for the bar transducer {thick
lines) with that of the FEM bar model {thin lines). The mechanical damping, Rm,
of the bar model is 7.6 kg/sec which produces a Q-factor of about 618 in air,
It should be also noted that the ratio of the third and the fundamental resonant
frequencies 1s about 2.925. This numerical ratio is very similar to the
experimental ratio in Fig.l. A similar set of results have been obtained for
the ring transducer. The Q-factor of the ring model in air is about &74 with
Rm=2.0 Kg/sec. The value of Rm was arbitrarily changed to produce an approximate
Q-factor similar to the experimental Q-factor,

In the same way, Fig.4 compares the measured frequency response for the bar
transducer {thick 1ines) with the analytical bar model (thin 1ines). The analytical
model produces the same Q-factor as the FEM model with Rm=7.56 Kg/sec. The ratio
of the third and the fundamental resonant frequencies is 3.0. Again similar
results are cobtained with ring transducer. The analytical model produces the
same Q-factor as the FEM model with Rm=2.0 Kg/sec.

These results, Fig.3 and 4, show that both the numerical and analytical models
predict resuits which are in quite qood agreement with experimental measurements
even though the manufacturer’s properties of PIZT4 ceramics have been used for
the models. However, the ratios of the third and fundamental resonant frequencies
from the experimental measurements and the FEM results are smaller than 3 (2.91
and 2.925 respectively). This is because of structural aspect ratio, which can
be demonstrated by decreasing the cross-section of the model structure. That is,
the analytical and the FEM results of the same bar model become very close when
the aspect ratio of the FEM model 1s reduced {see Fig.5). Fig.5 shows the
admittance responses of the FEM bar model (thick lines) and the amalytical bar
model (thin limnes). In Fig.5(a), the structure of both models is the same as
the previous case, whereas in Fig.5(b) the cross-section of both models have
been reduced. Therefore as anticipated the three-dimensional FEM approach for
the SONAR transducer modelling gives results which are in better agreement with
the measurements than does the one-dimensional analytical approach.

The FEM bar and ring models also enable the strains to be observed by generating
diagrams of the relevant geometry showing the deformatfons. Examples of these
will be shown during the presentatfon.

Finally, the effects of solid-fluid interfacing can be added to the primary
structural finite element program. Let us briefly consider the radiation effects
in an infinite fluid domain. Fig.6 shows tha difference of the frequency response
of the admittance between an in-air ring transducer model {thin line) and an
under-water ring transducer model {(thick 1ine). Fig.6(a} and (b) show the
magnitudes and the phases of the admittances. In general, the main effects of
fluid Toading on the structure are to introduce fluid damping and increase the
inertia of the structure, therefore lowering the resonant frequencies {15].
Details of acoustic radiation formulation for a coupled finite element-boundary
integral may be found in reference [16]. Essentially, the mathematical expression
for the solid-fluid interfacing is incorporated by simply adding an extra equation,
[£,], to equation 2a and equation 2b.
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(F,) + [Fa] = [Kudla) + [K,1(¢) - w?M]lla) + jw[R)la] (3a)
-[QY = [Kullal + [X,,104] (3b)
where [F,] represents the interaction forces generated by the acoustic fluid

acting on the fluid-solid boundary. The interaction force vectoer can be defined
through a coupling matrix [Z] and a fluid impedance matrix [K,], that is,

[F] = w?p,[L1[K,1'[L)(a) (4)
where p, is fluid density.
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Fig.3 Admittence responses of o bar transducer meacured (thick (ines) snd a FEM bar model (thin lines) in air
(8) |Admittance] [* 4.0E-7 5] vs Frequercy [* 20 KHz)
by Adnittancel [* 2.0E-4 51 va Frequency [+ &.25 Kz)
Exp. {thick lines) : f,,~1B.61075KHz , f,*18.704SKHZ . faun=18.79825KH=
FEM (thin lines) : fo,=18.14625KHz . f,»1B.2400kHz . f,,,=1B.3337SKHz

Proc.t.0.A. Voi 12 Part 1 (1990)

a4




Proceedings of the Institute of Acoustics

FEM

10000

Iadmintasral i* +0LF 61

(a)
Fig.%

10000

TR dmbcranaed * 6P £)
-
=2
=]

{8}
Fig.5

942

100 1

ANALYSIS OF SONAR TRANSDUCERS

I . Lidl

10000
s 4
i
100
1
. i |
J A
1
o . ! 10,1 2 5 . fan . n.ln'...:::_a:_ml il Fuwer
(b}

mi:hitil:ance responses of a bar trensducer measured (thick lines) end on snalyrical bar model (thin Lires)
noir

(a) |Admittance]| [* 6.0E-7 ] vs Frequency (* 20 KHB)

(b) |Admittence] [* 2.0E-4 5] v Frequency [+ 6.25 Mz)

Exp. {thick lines) : fau=!B.6107SKMx . f,=18.70450KHX . fa.r=1B6.79825KHZ

Aal. (thin lires) i Jan= 18 19754KH . f.=1829129KHz . f...~18.38504KH2
[ 10000 ]

1 3
] 100 |

H
] H
4 2

1
3
0 h...-:n- :I-':lo-nu 2 3 0 ru..-:u I:.I'l'Illxl -
-{b)

Adnittence responses of o FEN ber wodel (thick lines) end an snalyticol bsr model (thin lines) in air
tangth of the bar model {3 the sams in (8} and (b), but the crose-section of the bar was reduced in !h).
{a),(b) |Admittance| [* &.0E-7 S) vs Frequency [* 20 XH3)

Proc.l.0.A, Vol 12 Part 1 (1990}



Proceedings of the Institute of Acoustics

FEM ANALYSIS OF SONAR TRANSDUCERS

* $.08-7 8}

-
Q
o

Phase [ratien)

1A dmittenest |

1 2

Frauuency |* 90 KHr) Frequeney |* 8C k1]

Fig.6 Admittance responses of a FEM ring model fn afr (thick lines) and & FEM ring model in infinite water
domain (thin lines) Rm=7.6 Kg/sec
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