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In 1890 G.H. Bryan discovered what we call Bryan’s Law: "The vibration pattern of a revolving
cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell".
We call the rotation rate of the vibration pattern the precession rate. A vibratory gyroscope (VG)
operates using Bryan’s factor (the proportionality constant mentioned in the law). It is known
that linear anisotropic damping affects the precession rate of a perfectly manufactured VG rotat-
ing slowly about a symmetry axis, whereas neither linear nor nonlinear isotropic damping affect
it. In this paper, using graphical evidence obtained from a numerical experiment, we observe
that anisotropic quadratic damping apparently does appear to affect the precession rate of such
VGs. The equations of motion given here indicate that the experiment may be extended to any
order of or combination of nonlinear anisotropic damping with similar results. To achieve this
we define a new generalised form of Rayleigh’s dissipation function that allows the introduction
of anisotropic nonlinear damping into the equations of motion of a perfectly manufactured VG
rotating slowly about a symmetry axis. To graphically analyse our results we transform from fast
to slow variables (principal amplitude, quadrature amplitude, precession angle and phase angle
variables). We conduct a numerical experiment on the transformed equations of motion that visu-
ally demonstrates that anisotropic quadratic nonlinear damping produces principal and quadrature
vibrations that are damped down at different rates (as expected). The experiment indicates that the
precession rate varies with time, in contrast to the constant precession rate stipulated by Bryan’s
law for an ideal VG. This evidence suggests that control mechanisms should be investigated in
future that will minimise or eliminate anisotropic damping effects that may be present in VGs.

Bryan’s factor; vibratory gyroscope; anisotropic nonlinear damping

1. Introduction

With regard to G.H. Bryan’s publication [1] in 1890, we call the following Bryan’s law (or Bryan’s
effect)

The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the
inertial rotation rate of the cylinder or bell.

Vibratory gyroscopes (VGs) exploit this law. Indeed, a vibratory gyroscope (VG) operates using
Bryan’s effect and Bryan’s factor (the proportionality constant mentioned in the law).

Linear and nonlinear isotropic damping does not affect Bryan’ law in a VG as demonstrated in
[2]. It is well-known that a frequency split affects Bryan’s law (see for instance [3]). We show in this
paper that even if no frequency split is present in the VG any form of anisotropic damping does affect
Bryan’s law and hence VG accuracy.
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Notation is discussed in Section 2 while Section 3 discusses a new generalised form of Rayleigh’s
dissipation function, leading to nonlinear tangentially anisotropic damping. Equations of motion are
briefly discussed in Section 4 and a transform from fast to slow variables is conducted in Section 5.
Penultimately a numerical experiment is performed on the transformed equations of motion in Section
6 and ultimately some conclusions are drawn in Section 7.

2. Notation

We work in a polar coordinate system Orϕ and refer the reader to [4] (and in particular Fig. 1) for
notation, but we might have considered other curvilinear systemsOrϕk with k an "axis of symmetry"
variable, r a "radial" variable and ϕ a "tangential" variable.

As discussed in [4] we use the small dimensionless positive parameter ε to indicate the "smallness"
of a quantity. For instance by the "smallness of the inertial (angular) rate of rotation" about the axis
of symmetry εΩ, we mean that this rate is substantially smaller than the lowest eigenvalue ω0 of
the vibrating system. Consequently O(ε2) terms such as centripetal forces (proportional to ε2Ω2) are
neglected.

Consider a particle P in the VG under consideration (see for instance Fig. 1 of [4]). Assume that
u is "radial", v is "tangential" and w is "axial" displacement with

u = U [C(t) cosmϕ+ S(t) sinmϕ] , (1)

v = V [C(t) sinmϕ− S(t) cosmϕ] , (2)

w = W [C(t) cosmϕ+ S(t) sinmϕ] , (3)

where m is the circumferential wave number U, V and W are eigenfunctions of one or two variables
appropriate to the coordinate system. The functions C(t) and S(t) are dimensionless functions of
time and the eigenfunctions have the dimensions of length. In this paper we take w = 0 and assume
that all unbalanced forces in the axial z-direction are zero. Ultimately, the equations of gyroscopic
motion for each system under similar constraints will be identical.

For completeness we reproduce the definite integrals I0,I1, I2 and I3 given in Eqs. (14), (15),
(16) and (17) of [5], which occur in the calculation of the kinetic and potential energy for a disk VG
(DVG). For the annular disc in [4] Fig. 1 they are:

I0 =
1

2
ρ0h

q∫
p

(
U2 + V 2

)
rdr, I1 = ρ0h

q∫
p
UV rdr, I3 = ρ0h

q∫
p

(
U2 − V 2

)
rdr, (4)

I2 =
Eh

4 (1− µ2)

q∫
p

1

r


2rU ′ (µ (mV + U) + rU ′) +

(1− µ) (mU + V − rV ′)2 +
2(mV + U) (mV + U + µrU ′)

 dr, (5)

where E is Young’s modulus of elasticity, µ is Poisson’s ratio (see, e.g., [6]), ρ0 is average mass
density and h is the height of the disc.

It was demonstrated in [7] (for the appropriate definite integrals of the spherical VG studied there),
that Bryan’s factor η and the ideal VG natural angular rate or eigenvalue ω = 2πf (where f is the
natural frequency or eigenfrequency of vibration) are given respectively by

η =
I1
I0

& ω2 =
I2
I0
. (6)

3. Generalised Rayleigh dissipation

In order to introduce nonlinear damping into the equations of motion, we first consider Rayleigh’s
dissipation function R (discussed by Lord Rayleigh [8] in Section 81 and, for example, Goldstein
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et al. [9], Section 1.5) by adapting Eq. (11) of [10] to represent damping within the volume V of
the structure under consideration. If there are various layers in the structure, then we would possibly
take a sum of integrals, one for each layer. Analogous to [2] Eq. (8), in order to introduce nonlinear
damping, for n = 1, 2, 3, · · · we consider a sequence of dissipation functions

Rn=
1

2

∫
V

∆n(ϕ)
(
u̇2 + v̇2 + ẇ2

)
)dV ; n = 1, 2, 3, · · ·. (7)

where only finitely many of the Rn 6= 0. For example, setting Rn>2 = 0 models a combination of
linear and quadratic damping (see [2] Fig. 3 for the isotropic case). Defining the generalised Rayleigh
dissipation function

R=
∑∞

n=1

2

(n+ 1)

(√
Rn

)n+1

(8)

and, considering a Fourier series for the periodic damping coefficients ∆n(ϕ), we obtain

R=επI0
∞∑
n=1

2

n+ 1

(√
δn
)n+1

ωn−1 . (9)

In Eq. (9) we have

δn(Ċ, Ṡ) = δ
2

n+1

0,n (Ċ2 + Ṡ2) + ε̃(ĉn δ
2

n+1
c,n (Ċ2 − Ṡ2) + 2ŝn δ

2
n+1
s,n ĊṠ) (10)

with δ0,n > 0 being the “isotropic damping” coefficient that is proportional to the zeroth harmonic of
the Fourier series, δc,n > 0 (respectively δs,n > 0) being the “anisotropic damping coefficient” pro-
portional to the cosine (respectively sine) 2mth harmonic of the Fourier series, with ĉn (respectively
ŝn) being the sign of the cosine (respectively sine) 2mth harmonic of the Fourier series and ω being
the angular frequency of the mode of vibration m under consideration. The small quantity ε reminds
us that damping is light, while the small quantity ε̃ > 0 reminds us that the anisotropic part of the
damping is small enough so that δn(Ċ, Ṡ) > 0. Keeping the Euler-Lagrange equations in mind (see
[2]) it is readily seen that

∂R

∂Ċ
= 2πI0ε

∞∑
n=1

(√
δn
ω

)n−1 [(
δ

2
n+1

0,n + ε̃ĉnδ
2

n+1
c,n

)
Ċ + ε̃ŝnδ

2
n+1
s,n Ṡ

]
, (11)

∂R

∂Ṡ
= 2πI0ε

∞∑
n=1

(√
δn
ω

)n−1 [(
δ

2
n+1

0,n − ε̃ĉnδ
2

n+1
c,n

)
Ṡ + ε̃ŝnδ

2
n+1
s,n Ċ

]
. (12)

4. Equations of motion

As mentioned in the abstract, a VG operates using Bryan’s effect. However, Bryan’s effect is
affected by manufacturing imperfections in mass, stiffness and symmetry. A frequency split in a VG
indicates the presence of such imperfections. How to eliminate the frequency split caused by mass and
stiffness imperfections was discussed in [4] while an optimal mass-balancing scheme was discussed
in [3]. On the other hand, numerous numerical experiments using FEM have been applied similarly
in, for example, [11], [12], [13] and [14]. We will assume that frequency split has been eliminated
and model an ideal VG where only anisotropic nonlinear damping is introduced into the equations of
motion.

Using Eq. (6) of [2], the Lagrangian L of an of the ideal conservative system (where there are no
mass-stiffness or symmetry variations within the VG) is given by

L(C, Ċ, S, Ṡ) = π[I0(Ċ
2 + Ṡ2)− 2εΩI1(CṠ − ĊS)− (C2 + S2)I2] (13)

ICSV24, London, 23-27 July 2017 3



ICSV24, London, 23-27 July 2017

where definite integrals Ij; j = 0, 1, 2 are given in Eqs. (4) and (5) for a DVG.
Keeping Eqs. (6) in mind, substituting Eq. (13) into the Euler-Lagrange equations (see [2]) we

obtain

C̈ + ω2C = εf1(Ċ, Ṡ), (14)

S̈ + ω2S = εf2(Ċ, Ṡ). (15)

where
f1 = −2ηΩṠ − 1

2πI0ε

∂R

∂Ċ
, (16)

f2 = 2ηΩĊ − 1

2πI0ε

∂R

∂Ṡ
. (17)

These equations of motion could be solved numerically using the formulae for damping given by
Eqs. (11) and (12) in order to obtain graphics similar to Figs. 2 and 3 of [2], but we will gain lit-
tle insight into the affect that nonlinear anisotropic damping has on Bryan’s law and hence on VG
dynamics. Consequently we transform from fast to slow variables.

5. Principal and quadrature vibration

.

Figure 1: The green and orange curves illustrate that the isotropic quadratic damping rate appears to
be the same for the amplitudes of the principal P and quadratic Q vibrations. However, the damping
rate in the anisotropic case is clearly different as illustrated by the red and blue curves.

We introduce a change from "fast" to "slow" variables(
C(t), S(t), Ċ(t), Ṡ(t)

)
−→ (P (t), Q(t),Θ(t), ψ(t)) (18)
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using the transformation

C cosmϕ+ S sinmϕ = P cos[m(ϕ−Θ)] cos γ +Q sin[m(ϕ−Θ)] sin γ (19)

where P is the amplitude of the principal vibration, Q is the amplitude of the quadrature vibration,
mΘ is the precession angle (the rotation angle of the vibrating pattern) and ψ is a phase angle with

Ṗ = − ε
ω

[f1 cosmΘ + f2 sinmΘ] sin γ, (20)

Q̇ = − ε
ω

[f1 sinmΘ− f2 cosmΘ] cos γ, (21)

mΘ̇ =
ε

ω (P 2 −Q2)
{f1[P sinmΘ sin γ+Q cosmΘ cos γ]− f2[P cosmΘ sin γ−Q sinmΘ cos γ]},

(22)

ψ̇ = − ε

ω (P 2 −Q2)
{f1[P cosmΘ cos γ +Q sinmΘ sin γ] + f2[P sinmΘ cos γ −Q cosmΘ sin γ]},

(23)
where Eqs. (16) and (17) have been transformed according to [15] Eqs. (36) and (40).

6. Numerical experiment

It is well know that in the ideal case, the amplitudes P (t) and Q(t) of the principal and quadrature
vibrations (respectively) as well as the phase angle ψ(t) remain constant at the initial values, while
the precession angle mΘ(t) increases linearly from the initial value at a constant rate ηεΩ where εΩ
is the slow inertial rotation rate of the VG and η is Bryan’s factor for the VG (see Eq. (6)).

Before conducting numerical experiments using Eqs. (20) through (23)), we need to determine
reasonable estimates for quantities in Eqs. (16) and (17) as well as reasonable initial conditions. To
achieve this we use the "ideal" aluminium disc described in [16] with inner radius 1.45m and outer
radius 1.5m, that at them = 2 vibration mode has a natural angular frequency of approximately ωm =
30πrad.s−1 and Bryan’s factor ηm = − 8

10
. We use anisotropic quadratic damping (δ0,n6=2 = δc,n6=2 =

δs,n6=2 = 0) in Eqs. (16) and (17). We consider the following values in order to highlight the influence
of the anisotropic quadratic damping:

m = 2, ε = 1
100
, ε̃ = 1

10
, ηm = − 8

10
,Ω = πrad.s−1, ωm = 30πrad.s−1,

n = 2, ĉn = 1, ŝn = −1, δ0,n = 600Hz, δc,n = 3000Hz, δc,n = 7500Hz,
P (0) = 1

2
, Q(0) = 1

3
,mΘ(0) = 0rad, ψ(0) = 0rad, 0 ≤ t ≤ 300s.

(24)

It is clear from Fig. 1 that for the anisotropic quadratic case, the damping rate for the amplitude P
of the principal vibration is not the same the damping rate of the amplitude of the quadrature vibration
Q. This is in sharp contrast to the evidently equal damping rates for the isotropic case.

In [2] it was demonstrated analytically that isotropic nonlinear damping of any order (even com-
binations of such damping) does not affect the ideal precession rate of a VG and that the precession
rate is exactly the same as for the ideal case discussed above, namely mΘ̇ = ηεΩ. Fig. 2 con-
firms this observation for isotropic quadratic damping and also indicates that the precession rate mΘ̇
is not a constant for the anisotropic case. Consequently the presence of such anisotropic damping
will severely affect the accuracy of the VG and so it is imperative that control mechanisms for such
damping be investigated.

Finally, the numerical experiment indicates that the phase angle ψ(t) deviates from the ideal case
for both the anisotropic and isotropic quadratic damping cases although the deviation for anisotropic
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Figure 2: The green straight line represents a numerical solution for the precession angle of the VG
when isotropic quadratic damping is present . The black dotted straight line superimposed on the
green line represents the ideal precession angle of the VG, confirming known results about isotropic
damping of any order or combinations of orders. However, the red curve indicates that the presence
of anisotropic quadratic damping severely affects the precession rate mΘ̇ of the VG and hence the
accuracy of the VG.

damping appears to be more drastic than that of the isotropic case. The graph of this situation is
shown in Fig. 3.

We have conducted numerical experiments with other vibration modesm = 3, 4, 5, 6 and anisotropic
damping of orders 3 and 4 and combinations of these types of damping. All experiments return similar
results to the anisotropic quadratic case.

7. Conclusion

We have defined a new generalised form of Rayleigh’s dissipation function for both isotropic and
anisotropic damping of any order or combinations of orders. We have shown how to introduce such
damping into the equations of motion of a VG revolving slowly about a symmetry axis. We introduced
a numerical experiment that demonstrates that the precession rate of the VG deviates from a constant
rate when anisotropic quadratic (and higher order) damping is present.

In future work we will attempt to analyse the transformed equations of motion (Eqs. (20) through
(23)) using an "averaging" method (see [15]) that will confirm analytically (up to an average, for
any vibration mode m and any combination of any order of damping) the numerical results given
above. Furthermore, the numerical results above indicate that it is imperative that control methods be
established that limit the effects of ever present damping no matter what form it takes.
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Figure 3: The green curve indicates that isotropic quadratic damping has a minimal effect on the
phase angle ψ(t), in sharp contrast to the red curve representing the anisotropic case.
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