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ABSTRACT

This paper considers the problems of adaption of HMM models to ambient noise. The
objective of noise adaption is to obtain the model parameters that would be obtained if (he
training and operating environments were matched. Noise adapted HMMs can potentially
approach the performance of HMMs trained and operated in matched environments. The HMM
parameters affected by noise are state transition and observation densities. We focus on
methods of adaplation of state observation densities 1o noise.

1. INTRODUCTION
Performance of HMM speech recognition systems, trained on noise-free examples,
degrades severely in the presence of noise. HMMs perform well when the ambient noise in

operating and training environments are the same, but performance deteriorates when the
environments are different. For most applications it is impractical to match the environments
because the operating noise changes with time and space, and it is necessary to employ a noise
compensation scheme. Noise compensation methods for speech recognition can be classified
into three broad categories. In one category noise filtering methods such as speciral
subtraction or Wiener filtering are used to take out an estimate of the noise from noisy speech |
observation parameters [Lim & Oppenheim 1978) [Porter & Boil 1984] [Ephraim, Malah, |
Juang 1989]. In the second category the focus is on the development of distance measures :
which are robust to noise [Mansour, Juang 1989), [Carlson, Clements 1992]. In the third
category noise-free speech models are adapted to noise, and the noisy signal is left unmodified
[Roe 1987] [Nadas, Nahamoo, Picheny 1989), [Varga, Moore 1990} [Gales, Young 1992).

This paper considers methods of adaption of noise-free HMM parameters to ambient noise.
In recent years several methods for noise adaptive recognition systems were proposed. Roe
developed a noise adaptive code book in which autocorrelation coefficients are adapted o reflect
changes due to addition of noise and lombard effects. Nadas et al. describe a system for
adaption of a probabilistic mixture model of speech. The method is based on the observation
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that at any time the energy in a frequency band is dominated by cither the signal or the noise,
Varga and Moore describe an HMM based signal and noise decomposition in which the signal
and noise are modelled by separate HMM models. This is particularly.useful if the noise
evolves in time in such a way that it has to be modelled by a set of 'statistical states', Gales
and Young developed an improved method to HMM based speech and noise decomposition,
Noise obscures speech events and affects the way people articulate a word. In noise, people
speak Iouder and there are increases in duration, pitch and higher frequency energy of speech
(Pisoni et al 1985]. The noise-induced stress (also known as lombard effects) can be as
harm{ul to recognition as the noise itself, however in this paper the focus is on the effects of
additive noise. In the following we consider the effects of noise on signal observation space
and describe methods for adaption of state observation parameters of HMM models.

2. A SIGNAL AND NOISE LINEAR SPACE MODEL
Speech spectral features may be viewed as points in a multi-dimensional space fig(1).
Repetitions of an utterance forms clusters of points whose centroids represents the average
characteristics of the utterance. Each cluster may be modelled by a multivariate Gaussian
density N (x.. B, C). An observation vector, x,, can be classified using the maximum
likelihood criterion as
Label(xy) = argniax (P NG . Cb - (1)

where py, the cluster prior probability, is a measure of the fraction of training vectors associated
with cluster k.
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Figure{1) - (a) Noisc-frec signal clusters 5(f) {b)} Moisy signal Y(f) = S(f) + N(f), noise
and cenroids denoied by X effecw the mean and variance of clusters.

Using noisc-free models 1o classify noisy datn results in errors due to mismatching. 1n this case
cluster 4 would be classified as 3 and cluster 1 as 2.

In this signal space the effects of noise on a signal cluster is iwo fold; (a) the centroid of the
noisy signal cluster is moved in the general direction of noise, and (b} the variance of signal
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cluster increases fig(1.b). Both effects result in a decrease in intercluster distance and an
increase in recognition error. The objective of noise compensation is to correct the discrepancy
between the mean of the noisy signal and noise-free models. This can be done in two ways :
either the noisy signal is filtered in order to move the centroid of noisy signal cluster towards
the noise-free models as in spectral subtraction, or the noise-free models are adapted in order
1o move the centroids of the models towards the noisy signal,

3. EFFECTS OF NOISE ON OBSERVATION LIKELIHOOD USING HMMS
TRAINED ON NOISE-FREE EXAMPLES
In a HMM the probability that a speech utterance, y, is associated with a model Ag.

summed over all state sequences, 4, and mixture sequences, h, is given by

P, ) = X3 p; () py (Wa) py (yihg) (2)
g h

The state observation probability, py,(y ' h, q), commonly modelled by a mixture Gaussian
density, is the function through which the signal and noise influence the likelihood calculations.
In the following the effects of noise on observation likelihood for the case in which the
likelihood funcrion itself is trained on noise-free signal is considered. The noisy signal
speciral energy, Y(w), is the sum of signal, $(t), and noise, N(cw)

Y(w) = S(@) + N(@) (3)
The pdf of noise-free signal magnitude spectrum is assumed as

.ol @)= @, (4)
Puar(S(@) 2o () =pl 207 (w) )

where jg(w) is the mean magnitude spectrum at , and a2, is the variance of sample
spectrum about the mean. The pdf of noisy signal based on noise-free signal statistics is
1 () Nw)-pt (@)}
Y{w)) = L 5
Px(a)( (m)) ‘Jﬁd‘,(&)) elP( 20‘2(‘“) ) ( )
Taking expectation of log likelihood and substiruting N(w) = N'(w) + n(0), where N'() is a
Zero mean poise magnitude spectrum gives

L
E{1081Py(ay (Y(@)] = loglp,iuy(S(e)] -"}‘(:”"(‘;")""” ©6)
]

Eq(6) shows that the decrease in probability depends on the noise power spectrum (), the
variance of noise sample spectrum (), and variance of signal sample spectrum 64(). In
spectral subtraction, the term py(w) may be subtracted out, whereas the term ay(w) constitutes
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an irrevocable degradation. In a probabilistic formulation of the noise problem the effects of
both the mean and the variance of noise on speech distribution may be taken into account.

4. ADAPTIVE HIDDEN MARKOV MODELS

The main parameiers of an HMM are the state transition and observation densities. State
transitions provide a mechanism for modelling variations in articulation rates. State observation
model the feature space associated with each state. we consider adaption of state observation
parameters, as these are most affected by noise and are easier to adapt. In the following we
assume the observation parameters for the i®® state consists of M mixture Gaussian densities
denoted by the parameter set (pix. Hix. Zi, k =1..... M). We make the assumption that the
main effect of noise on each component of the mixture is a shift of the mean vector, py, and an
increase of the variance. y, and ignore the effect of noise-induced cluster redistribution on the
parameter pig.

4.1 Adaption of State Observation Using Linear Speech Features
The computational complexity and ease of adaption of state observation probabilities

depends on the choice of speech feature vectors. The adaption of state observation is relatively
easier for linear feature vectors such as filter bank outputs or correlation coefficients compared
to nonlinear features such as log spectral energy or cepstrum. For linear features the distribution
of noisy signal N (j1y, Xy} is the sum of the distributions of the signal N(j,, Z,) and the noise
N(un, o) expressed as

Hy=SNET |, +il, )

I,=sne’L, +L, (8)
where SNR is the signal 10 noise ratio. The drawbacks of using linear spectral features are :
(a) a relatively gmhter number of spectral features are required compared to cepstral features,
and (b} the recognition results using spectral features are not as good as the results based on
cepstral features. '

4.2 Adaption of State Observation using Log Spectral Energy
and Cepstral’ Features
A problem in adaption of models that use Jog spectral energy or cepstral features is that due
to logarithmic operation the distribution of noisy features can not be obtained by simple
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addition of the distributions of signal and noise. Nadas ef al based their adaption of log
spectral energy prototypes on the observation that at any time speech spectral energy is
dominated by either the signal or the noise. They describe the noisy speech density in terms
of the densities of signal and noise as .
h(z)=f (2)G{(z)+ F(2)g(z) ®

where h(z} the obscrvation density is expressed in terms of the signal density f(z} and the noise
density g(z). F(z) and G(z) are cumulative density functions. This scheme can also be
incorporated into a noise-adaptive HMM model. A drawback with this method is its reliance on
the use of log speciral energy features which are not as efficient as cepstral features.

Most speech recognition sysiems use cepstral feature vectors for compactness, good
invariance and supposedly small correlation among feature vector elements. Cepstral parameters
are cosine transform of log spectral parameters. Of interest are the mappings between the
statistics of spectral and cepstral parameters. Such a mapping would allow us to adapt in linear
spectral domain and transform the results into cepstral domain. When cepstral parameters, ¢;,
are modelled by a Gaussian density, then the distribution of the log spectral energy, x;, is also
Gaussian, and the distribution of spectral energy, 5; =¢™, is lognormal

Jls;=e" —— e(_umi—"" ’f2sl)

10
mc,._ 8 ( )
The equations relating the mean and variance of a Gaussian distributed log spectrum (!, I)
and those of the log nommal distributed spectrum (p, I) [ Gales and Young] are :
1
Ki=loglh,) - Z; an

Z=log( 1+ /wn;) a2
The mean vector, j°, and covariance matrix, X<, of cepstrum and log spectrum are related by
the cosine transform C as

pe= Cpl (13)

Zcij =C Elij CT (14)
The effects of noise on the mean and variance of clean model may be calculated in the linear

spectral energy domain using equations (7) (8) , and the results transformed into cepstral
domain.

Another form of commonly used speech features are the LPC-cepstral parameters which
are obtained from linear predictor coefficients using the recursion
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k-1

Ctz—at—Z(l_%)anct-n
n=l

where 2, and ¢ are the linear predictor and cepstral coefficients respectively, The LPC vector,

a, is derived from the autocorrelation vector, ry, and the effect of noise on autocorrelation
veclor is additive i.c. ry= r; +rn. A method of adaption of the mean cepstral vector, ¢, is to
add the effect of noise to the corresponding autocorrelation vector ry, and then transform the
result into the noise adapted cepstral vector ¢y. This method compensales for noise-induced
shifts in cepstral means but does not provide for the effects of noise on signal variance.

4.3 Cepstral Compensation

HMM models can be adapted to noise by addition of a2 compensation cepstral vector to
the mean of each mixture component. The cepstral compensation vector may be word based
or state based. A word based compensation vector may be obtained as the average difference
vector between the clean and noisy cepstral vectors

cmw=%(§:cmw—§c&n)

A slate-based compensation vector can be derived in a similar manner as the average difference
between the clean and noisy vectors associated with each state, The direction and magnimde of
compensation vector depends on SNR. The SNR varies globally across a word as a function
of the average signal and noise energies, and also locally with the changes in energy across an
utterance. The problem of local variations in SNR across the segments of a word can be dealt
with by using state based compensation vectors. However the global changes in SNR makes
the use of this compensation scheme for varying SNR impractical.

5. RESULTS

Experiments are based on a data set of spoken English alphabet. For each of the 26 letters,
the HMM model was trained using 52 speakers with 3 utterances per speaker. The test data set
consisted of a similar number of utizrances from a different sct of speakers. The feature vector
{c, Be, BlogE), consists of 25 features comprising of 12 cepstral coefficients, 12 differential
cepstral coefficients and differential log energy. The baseline HMM recogniser chosen is an 8-
state left-right HMM without skip-state transition, with 7 mixture multivariate Gaussian density
per state and diagonal covariance matrices. The recognition rate of this HMM system in a noise
free environment is abowt 87 %. The relatively low accuracy is due to several confusable
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subsets in the alphabet vocabulary. The following experiments were performed and the results
are tabulated in table-1.

Recognition in Matched Conditions The results for Matched conditions provide an
upper bound on recognition accuracy of noise compensated HMMs, as it is unlikely that a noise
adapted HMM can outperform one trained and operated in matched conditions.

Recognition in Noise Using Noise-Free Models : A set of HMM models were
trained on noise-free examples and tested on examples which had white Gaussian noise added.
The recognition accuracy deteriorates rapidly as the SNR falls below 30 dB.

Spectral Subtraction - A non-linear fraction , ®(SNR), of an estimate of noise spectral
template was subtracted from noisy signal spectrum. The choice of w(SNR) has a significant
effect on recognition rate and it was empirically chosen to produce optimal results.
Noise-Adaptive HMMs- In these experiments noisy signal was left unmodified and noise-
free state observation statistics were 2dapted 10 noise. The adaption of mean and variance were
performed in linear spectral energy domain and the results were then transformed into cepstral
statistics. As table-1. indicates noise adaptive HMMs outperform front end compensation
methods such as spectral subtraction, but the performance is not as good as than those oblained
under matched conditions.

SNR Recognition Accuracy (%)

Jg_g) Maitched| Clean S8 AHMM
843|799 82.9 83.1

20 77.0 52.9 645|683

15 72.6 8.7 45.7 1492

10 630 19.6 23.6 35.3

3 313 4.7 9.2 22.4

(4] 48.4 4.4 8.0 16.0

Table-1: Recognition accuracy Vs SNR for HMMs. KEY : AHMM = Adaptive HMMs,
$S = Speciral Subtraction

6. CONCLUSION
The objective of adaption of HMMs is to obtain the statistical parameters and hence
performance that would be obtained if the training and operating envircnments were maiched.
Several schemes for adaption of observation parameters of an HMM were considered. The
main drawback of noise-adaptive models is the relatively large computational increase involved
in adaptation of every state of each model.

Proc.l.0.A. Vol 14 Part & (1882)




Proceedings of the Institute of Acoustics

" NOISE-ADAPTIVE HIDDEN MARKOV MODELS

REFERENCES _

Carlson, B. A., Clements, M. A. (1992),"Speech Recognition in Noise Using a Projection-
Based Likelihood Measure for Mixture Density HMM's*, IEEE Proc. ICASSP-92,

Pages [-237-1240, San Francisco.

Ephraim, Y., Malah D., Juang B. H. , (1989), “On the Application of Hidden Markov
Models for Enhancing Noisy Speech”, IEEE Trans. ASSP, vol. 37,pages 1846-1856,
December .

Gales,M.LF., Young, 5.,(1992),"An Improved Approach to the Hidden Markov Model
Decomposition of Speech and Noise”, IEEE Proc., ICASSP_92, pages 1-223-1-226,

San Francisco.

Lim, I. ., and Oppenheim, A. V., (1978),"All-pole modelling of degraded speech”, [EEE
Trans. Acoust., Speech and Signal Proc., vol. ASSP-26, pages 197-210, June .

Mansour, D., Juang, B. (1989),"A Family of Distortion Measure Based Upon Projection
Operation For Robust Speech Recognition”, IEEE Trans, ASSP, Vol 37, pages 1659-1671,
Novemnber. '

Nadas, A., Nahamoo, D., Pichney, A., (1989),"Speech Recognition Using Noise-Adaptive
Prototypes”, IEEE Trans. ASSP, vol. 37, No. 10, pages 1495-1503, October.

Pisoni et al,(1985)" Some acoustic-Phonetic Correlates of Speech Produced in Noise™, IEEE
Proc. ICASSP-85, pages 1581-1584, Florida.

Porter, 1. E., Boll, S. F. (1934),"Optimal estimators for spectral restoration of noisy speech”,
IEEE Proc. ICASSP-84, San Diego, California, pages 18A.2.1.-184A.2.4,, March,

Roe, D. B., {1987),” Speech Recognition with a Noi.ée-Adapting Codebook”, IEEE Proc.
ICASSP-87, pages 1139-1142, Dallas, Texas.

Varga, A_P., Moore, R K.(1990),"Hidden Markov Model Decomposition of Speech and
Noise" IEEE Proc. ICASSP-90, pages 845-848, NewMexico.

L1 Proc.|.0.A. Vol 14 Pant 6 (189




