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ABSTRACT

This paper considers the problems of adaption of HMM models to ambient noise. The

objective of noise adaption is to obtain the model parameters that would he obtained if the
training and operating environments were matched. Noise adapted HMMs can potentially
approach the performance ofHMMs trained and operated in matched environments. The HMM
parameters affected by noise are state transition and observation densities. We focus on

methods of adaptation of state observation densities to noise.

I. INTRODUCTION

Perfonuanoe of HMM speech recognition systems. trained on noise-free examples.
degrades seveme in the presence of noise. HMMs perform well when the ambient noise in

operating and training environments are the same. but performance deteriorates when the

environments are different For most applications it is impractical to match the environments
' bécause the operating noise changes with timeand space. and it is necessary to employ a noise

compensation scheme. Noise compensation methods for spmch recognition can be classified
into three broad categories. In one category noise filtering methods such as spectral

subtraction or Wiener filtering are used to take out an estimate of the noise from noisy speech

observation parameters [Lim & Oppenheim 1978] [Poner & Boll 1984] [Ephraim. Malah,
Juang 1989]. In the second category the focus is on the development of distance measures

which are robust to noise [Mansour, Iuang 1989]. (Carlson. Clements 1992]. In the third

category noise—free speech models are adapted to noise. and the noisy signal is left unmodified

[Roe 1987] [Nadas. Nahamoo. Picheny 1989]. [Varga, Moore 1990] (Gales. Young 1992].

This paper considers methods of adaption of noise-free HMM parameters to ambient noise.
In recent years several methods for noise adaptive recognition systems were proposed. Roe

developed a noise adaptive code book in which autocorrelation coefficients are adapted to reflect
changes due to addition of noise and lombard effects. Nadas er al, describe a system for
adaption of a probabilistic mixture model of speech. The method is based on the observation
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that at any time the energy in a frequency band is dominated by either the signal or the noise.

Varga and Moore describe an HMM based signal and noise decomposition in which the signal

and noise are modelled by separate HMM models. This is panicularlyluseful if the noise

evolves in time in such a way that it has to be modelled by a set of 'stalistical states'. Gales

and Young developed an improved method to HMM based speech and noise decomposition

Noise obscures speech events and affects the way people articulate a word. In noise. people

speak louder and there are increases in duration, pitch and higher frequency energy of speech

[Pisoni etal 1985]. The noise—induced stress (also known as lombard effects) can be as

harmful to recognition as the noise itself. however in this paper the focus is on the effects of

additive noise. In the following we consider the effects of noise on signal observation space

and describe methods for adaption of state observation parameters of HMM models.

2. A SIGNAL AND NOISE LINEAR SPACE MODEL

Speech specual features may be viewed as points in a multi-dimensional space fig(l).

Repetition: of an utterance forms clusters of points whose centroids represents the average

characteristics of the utterance. Each cluster may be modelled by a multivariate Gaussian

density N(x.. |.t. C). An observation vector. in, can be classified using the maximum

likelihood criterion as

Labelor.) = argnlt‘ax (pkNOtp Ilk. Ctr)! (l)

where 1).. the cluster prior probability. is a measure of the fraction of training vectors associated

with cluster k.
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In this signal space the effects of noise on a signal cluster is two fold: (a) the centroid of the

noisy signal cluster is moved in the general direction of noise. and (b) the variance of signal
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cluster increases fig(l.b). Both effects result in a decrease in intercluster distance and an
increase in recognition error. The objective of noise compensation is to correct the discrepancy
between the mean of the noisy signal and noisefree models This can be done in two ways :
either the noisy signal is filtered in order to move the centroid of noisy signal cluster towards
the noise‘free models as in specua] subtraction. or the noise-free models are adapted in order
to move the centroids of the models towards the noisy signal.

3. EFFECTS OF NOXSE 0N OBSERVATION LIKELIHOOD USING HMMS
TRAINED 0N NOISE-FREE EXAMPLES

In a HMM the probability that a speech utterance. y, is associated with amodel As.

summed over all state sequences. q. and mixture sequences. h. is given by

phty) = 221mm) Pt.(hlq) p;_(y|h.q) (2)
q I

The state observation probability. “,0 lh, q). commonly modelled by a mixture Gaussian

density. is the function through which the signal and noise influence the likelihood calculations.
In the following the effects of noise on observation likelihood for the case in which the

likelihoadfwrctian itself is trained on noise-free signal is considered. The noisy signal
spectral energy. Y(u)). is the sum of signal. 5(a)). and noise, N(m)

Y(w) = 5(0)) + N((u) (3)

The pdf of noise-free signal magnitude spectrum is assumed as
a t («mi-um)? (4)Eran-(0)) mall” I I‘m) )

where psm) is the mean magnitude spectrum at to. and 025m) is the variance of sample

spectrum about the mean. The pdf of noisy signal based on noise-free signal statistics is

1 [:(w)+N(nu-u to)?y = —_ ———‘——— 5p.(.,,( (0’)) max”) em 203(0) ) ( )

Taking expectation of log likelihood and substituting N((n) = N'(0)) + HN(0)). where N‘(to) is a

zero mean noise magnitude spectrtun gives ,
a: 2

EitoslP.(m)(Y(m))Ii = Iogle)(-t(m))l - "(firm (6)
I

Eq(6) shows that the decrease in probability depends on the noise power spectrum yuan). the

variance of noise sample spectrum oN(tu). and variance of signal sample spectrum 65(0)). in
spectral subtraction. the term uN(cu) may be subtracted out. whereas the term oN(tu) constitutes
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an irrevocable degradation. In a probabilistic formulation of the noise problem the effects of

both the mean and the variance of noise on speech distribution may be taken into account.

4. ADAPTIVE HIDDEN MARKOV MODELS

The main parameters of an HMM are the state transition and observation densities. State

transitions provide a mechanism for modelling variations in articulation ram. State observation

model the feature space associated with each state. we consider adaption of state observation

parameters. as these are most affected by noise and are easier to adapt. In the following we

assume the observation parameters for the i‘h state consists of M mixture Gaussian densities

denoted by the parameter set (pm. pix. Em. k =1..... M). We make the assumption that the

main effect of noise on each component of the mixture is a shift of the mean vector. um. and an

increase of the variance. 21, and ignore the effect of noise-induced cluster redisuibution on the

parameter pm.

4.1 Adoption of State Observation Using Linear Speech Features

The computational complexity and ease of adaption of state observation probabilities

depends on the choice of speech feature vectors. The adaption of state observation is relatively

easier for linear feature vectors such as filter bank outputs or correlation coefficients compared

to nonlinear features such as log spectral energy or oepstrum. For linear features thedistribution

of noisy signal N01,. 2,) is the sum of the disuibutions of the signal N01,, L) and the noise

N01... 2.) expressed as

u,=sm’u.+u. (7)
2,:m’2,+2,, (s)

where SNR is the signal to noise ratio. The drawbacks of using linear spectral features are :

(a) a relatively greater number of spectral features are required compared to cepsrral features,

and (b) the recognition results using spectral features are not as good as the results based on

oepstral features.

4.2 Adaption of State Observation using Log Spectral Energy

and Cepstral' Feamrs

A problem in adaption of models that use log spectral energy or cepstral features is that due

to logarithmic operation the distribution of noisy features can not be obtained by simple
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addition of the distributions of signal and noise. Nadas and based their adaption of log
spectral energy prototypes on the observation that at any time speech spectral energy is
dominated by either the signal or the noise. They describe the noisy speech density in terms
of the densities of signal and noise as .

h(z)=f(z)G(z)+ Hz)g(z) (9)
where h(z) the observation density is expressed in terms of the signal density {(2) and the noise
density g(z). F(z) and 6(1) are cumulative density functions. This scheme can also be
incorporated into a noise-adaptive HMM modeL A drawback with this method is its reliance on
the use of log spectral energy features which are not as efficient as oepstral features.

Most speech recognition systems use eepstral feature vectors for compactness. good
invariance and supposedly small conelau'on among feature vector elements. Cepsttal parameters
are cosine tmtsform of log spectral parameters. of interest are the mappings between the
statistics of spectral and ccpstral parameters. Such a mapping would allow us to adapt in linear
spectral domain and transform the results into cepstral domain. When ccpstral parameters. ci.
are modelled by a Gaussian density. then the distribution of the log spectral energy. xi. is also
Gaussian. and the distribution of spectral energy, 5; =e"". is lognonnal

I 1

The equations relating the mean and variance of a Gaussian distributed log spectrum 01'. 2')
and those of the log normal distributed spectrum (u. 2) [Gales and Young] are :

Wagon—£2..- (u)
Zij=log(l+2ij/pi|.tj) (12)

The mean vector. u‘. and covariance matrix, 2‘. of cepstrum and log spectrum are related by
the cosine transform C as

m = C u' (13)
2‘“ = C21“- CT (14)

The effects of noise on the mean and variance of clean model may be calculated in the linear
spectral energy domain using equations (7) (8) . and the results transformed into cepstral
domain.

Another form of commonly used speech features are the LPC-cepstral parameters which
are obtained from linear predictor coefficients using the recursion
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k-l

Ek='at'2(l‘%)anCt—n
n=l

where a. and q‘ are the linear predictor and cepstral coefficients respectively. The LPC vector,

a. is derived from the autocorrelation vector. r.. and the effect of noise on autocorrelation

vector is additive i.e. r,= r. +r... A method of adaption of the mean cepstral vector. as. is to

add the effect of noise to the corresponding autocorrelation vector r., and then transfonn the

result into the noise adapted cepstral vector c,. This method compensates for noise-induced

shifts in cepstral means but does not provide for the effects of noise on signal variance.

4.3 Cepstral Compensation

HMM models can be adapted to noise by addition of a compensation cepstral vector to

the mean of each mixture component. The cepstral compensation vector may be word based

or state based. A word based compensation vector may be obtained as the average difference

vector between the clean and noisy cepstral vectors

cmfigcmrgcm)

A state-based compensation vector can be derived in a similar manner as the average difference

between the clean and noisy vectors associated with each state. The direction and magnitude of

compensation vector depends on SNR. The SNR varies globally across a word as a function

of the average signal and noise energies. and also locally with the changes in energy across an

utterance. The problem of local variations in SNR across the segments of a word can be dealt

with by using state based compensation vectors. However the global changes in SNR makes

the use of this compensation scheme for varying SNR impractical.

5. RESULTS

Experiments are based on a data set of spoken English alphabet. For each of the 26 letters.

the HMM model was trained using 52 speakers with 3 utterances per speaker. The test data set

consisted of a similar number of utterances from a different set of speakers. The feature vector

(e. 5e. BlogE), consists of 25 features comprising of 12 cepsu-al coefficients. 12 differential

cepsu'al coefficients and differential log energy. The baseline HMM recogniser chosen is an 8-

state left-right HMM without skip—state transition. with 7minute multivariate Gaussian density

per state and diagonal covariance matrices. The recognition rate of this HMM system in a noise

free environment is about 87 ‘70. The relatively low accuracy is due to several confusable
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subsets in the alphabet vocabulary. The following experiments were performed and the results

are tabulated in table-1.

Recognition in Matched Conditions The results for Matched conditions provide an

upper bound on recognition accuracy of noise compensated HMMs. as it is unlikely that a noise

adapted HMM can outperform one trained and operated in matched conditions.

Recognition in Noise Using Noise-Free Models : A set of HMM models were

trained on noise-free examples and tested on examples which had white Gaussian noise added.

The recognition acctuacy deteriorates rapidly as the SNR falls below 30 dB.

Spectral Subtraction - A non-linear fraction . a.(SNR). of an estimate of noise spectral

template was snbttacted from noisy signal spectrum. The choice of (1(SNR) has a significant

effect on recognition rate and it was empirically chosen to produce optimal results.

Noise-Adaptive HMMs- In these experiments noisy signal was left unmodified and noise-

free state observation statistics were adapted to noise. The adaption of mean and variance were
performed in linear specnal energy domain and the results were then transformed into cepstral

statistics. As table-1. indicates noise adaptive HMMs outperform front end compensation

methods such as spectral subtraction. but the performance is not as good as than those obtained

under matched conditions.

   

   

 

    
   

' -v gnmon Accuracy 7-.
SNR

Elm

Table-1 : Recognition accuracy Vs SNR for HMMs. KEY : AHMM = Adaptive HMMs.

SS = Spectral Subtraction

 

  

6. CONCLUSION

The objective of adaption of HMMs is to obtain the statistical parameters and hence

performance that would be obtained if the uaining and operating environments were matched.

Several schemes for adaption of observation parameters of an HMM were considered. The

main drawback of noise-adaptive models is the relatively large computational increase involved

in adaptation of every state of each model.
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