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1. INTRODUCTION

This paper dacribes the results of some simple vowel-discrimination experiments based on
isolated trames of data. That data was produced from short segments taken from the TIMIT
database, and took the form of the new, linear frequency-scale, version of the Reduced Au-
ditory Representation (BAR) [l]. The recognition was performed using standard linear dis-
criminant techniques, albeit with arather lower dimensionality than normal heuuse of the
reduced number of classes which were to be identified.

2. THE ‘ORIGINAL’ RAR

2.1 The Basic Principle
The BAR is a method for analysing acoustic signals (speech in particular), which is based on a
functional model of the peripheral auditory system. it includes models of adaptation, masking
and loudnms compression, and exhibits most of the phenomena observed in physiological
experiments to a reasonable degree of accuracy.

Although the EAR has evolved over many years [2,3,4,1], it has consistently been founded on

the premise that it is not solely the mean neural firing rate which characterises sounds in the

auditory nerve. Other features are just as likely to be important to human perception (and in

some cases, more so). The RAR therefore provides four parameters for each point along the

cochlear partition and for each point in time: a mean firing rate (related to signal intensity

and encoded on a logarithmic scale), an adaptation factor (also logarithmically encoded), a

dominant frequency and a phase delay between adjacent channels. The first two of these are

determined by the static and dynamic aspects of the signal amplitude, respectively, while the

last two are functions of the component frequencies.

2.2 The Need for Phase Information
Of particular interest, both for signal characterisation and for source separation, are the syn-

chrony between neurons responding to a common signal component, and that between those

responding to different components originating from the same source. These ‘synchrony’ fac-

tors are essentially functions of the phase structure of the basilar membrane displacement,

and so are not present in long-term neural firing rate data. They can, however, be charac-

terised by phase derivatives, which are (fortunately) slow to change in most cases. This is the

approach tslren in the EAR. analysis.

Proc.l.0.A. Vol 14 Pan 8 (1992)



 

Proceedings of the Institute of Acoustics

INTERFACING AN AUDITOHY MODEL. . .

By making estimates of the phase derivative with respect to cochlear position, as well as that

with respect to time, a more complete description of local synchrony is obtained. Global syn-
chrony is more problematical though, since attempts to identify synchrony between arbitrary

combinations of signal components tend to lead to a ‘data explosion’ with too many possible
ways of combining those components. This problem has not yet been addressed in the BAR.

2.3 Back to Basics

The other underlying principle behind the BAR analysis is that it is kept mathematically sim-
ple (and hence easy to understand, eflicient to compute on DSP hardware and with predictable
behaviour. even when presented with complicated signals such as speech). In practice, this
means that all four parameters are calculated as weighted averages of instantaneous estimates
of the respective values. Thus each parameter is the result of integrating two functions over

a common window, and then dividing one by the other.

The nature of the weighting function (the denominator in the preceding description) is chosen

so as to produce ‘correct’ results, assuming that the window is large enough, while emphasising

the high-energy sections within the signal. In this way, the parameter estimates tend to reflect

whichever of the components is ‘dominant‘ at any given point. The RAR is therefore less

blurred than a more conventional analysis might be when presented with a composite signal.

3. RECOGNISI'NG SPEECH FROM ITS RAR

To avoid the problems of pitch harmonics and/or pitch pulses disrupting the RAH data

and causing subsequent misrecognition, a ‘position-tolerant distance measure' was introduced

in This, together with the long duration of the RAR’s temporal integration window,

produced extremely encouraging results. The next step in this line of investigation should

have beento extend the ‘pcsition-tolerant’ concept to include the temporal dimension and

avoid the integration process altogether. However the method, as presented in [3] and [4],

was based on the idea that the recogniser was performing a pattern-matching task, rather

than any form of parametric modelling. This meant that the new distance measure was

inapplicable to continuous-distribution hidden Markov models (HMMs). As it turned out, it

was also inappropriate for discrete-distribution HMMs, because of the high dimensionality of

the EAR data and the consequent difficulty of performing sensible vector quantisation‘.

One possible solution to these problems might be to use the ‘position-tolerant distance mea-

sure' in a ‘fuzzy vector quantiser‘. This approach is currently being investigated, although

the results described here were obtained using a more obvious and somewhat less interesting

technique.

 

‘ll' the codebook were too small. or the centres placed in inappropriate positions, information would be lost

and recognition performance degraded. Conversely, if it were large enough to ensure that there were centres

near every conceivable region ofimportance, then the amount of training data needed to build statistically

reliable probability atimata, would be vast.
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Figure 1: RAB. of a typical TIMIT utterance optimised for resolution of events with char-
acteristic duration of 12.5 ms and bandwidth of 400 Hz. Each band represent one RAE
parameter. From the top down, these are the delay, frequency, adaptation and intensity,
respectively.

4. MODIFYING THE RAH

4.1 Spatio-Temporal Integration
To overcome the problems associated with changes in pitch, some form of spatial integration
was required (in addition to the temporal integration already inherent in the calculation of
the RAE parameters). This spatial integration has not been directed by theories of speech
perception (although this has been investigated in some detail by others at Sheilield
Instead, a purely pragmatic approach has been taken: it has been assumed that the highest
pitch likely to be analysed is 400 Hz. so the outputs of all channels with centre frequencies
Within about 400 Hz of any chosen reference point are weighted and summed as part of the
existing (previously solely temporal) averaging process. Similarly, the maximum expected
pitch period of 125 ms is used to define the extent of the temporal averaging. An example
of an EAR designed to give these respective degrees of temporal and spectral resolution is
shown in figure 1.

This description is actually somewhat oversimplified, since the form of the weighting in both
spatial and temporal dimensions is chosen quite carefully, so as to make the most of the
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Figure 2: RAR of a syllable extracted from a typical TIMIT utterance optimised for resolution

of events with characteristic duration of 1.25 ms and bandwidth of 40 Hz, Each band rcp—

resents one RAH. paxameter. From the top down, these are the delay, frequency, adaptation

and intensity, respectively

resolution available at the various channel outputs

4.2 Information Loss
Although the aim of this process is to remove any evidence of pitch variation, it should be

noted that it can have other advantages if the data is, say, intended for visual representation,

rather than automatic speech recognition In such cases, it need not result in information

loss since the length of the temporal window can actually be reduced in proportion to the

broadening in the spatial dimension. Figure 2 shows an example of such an BAR, clearly

revealing both formant structure and individual pitch events.

This is especially useful for the low frequency channels of the auditory model, because the

minimum length of the temporal window should really be set inversely proportional to the

bandwidth of the respective basilar membrane filter‘ The low frequency channels have narrow

bandwidths. so they would otherwise require excessively long temporal swinging windows.

The original RAR often exhibited artifacts in these channels because of inadequate window

length (although they were not deemed important because these channels were phonetically

“informative anyway). By way of contrast, the new version has not produced any visible
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' artifacts for any of the data so far analysed.

4.3 Frequency Scale
,Because the spatial integration reduces the lowvfrequency resolution of the analysis to 400
Hz, there is little sense in spacing the reference frequencies according to the same ERR-rate
scale [6] as was used for the original auditory model. A linear frequency scale is more natural
when the resolution is constant, and that is the one which has been used in this paper. This
results ina slight over-sampling of the highdrequency region (where the resolution is limited
by the bandwidth of the basilar membrane filter), but the recogniser described below is not
adversely afiected by over-sampling, so this is unimportant.

5. RECOGNITION EXPERIMENTS

The task described here is speaker-independent phonetic classification of the phonemes [AB],
/EI-l/ and /ER/, based solely on isolated frames of RAR data. This task was selected because
it is reasonably taxing (these three sounds are often confused by conventional phonetic recog-
nisers and the absence of any context makes the task more difficult still), while the results
are easy to interpret because of the small number of classes involved. Furthermore, we would
assert that any recogniser which can successfully distinguish these sounds should be able to
classify any vowel with asimilar degree of reliability.

5.1 Data

The data used in these experiments were all the examples of the phonemes labelled [AB],
and [ER/ in dialect region 5 of the TIMIT database. A single dialect region was chosen

because it was felt that there was nomechanism within the BAR or the recogniser described
below which could be expected to cope with inter-dialect variations. A practical recogniser
could be expected to incorporate some form of dialect modelr Dialect region 5 was selected
because it contained a fairly large number of speakers and bad the nearest to equal ratio of
male to female (albeit still only 37% female).

Both male and female speech have beenused because there is no absolute boundary which
be drawn (purely on the grounds of acoustic evidence) between the two. Some speakers

xhibit speech patterns which are difficult to classify with any degree of certainty, and if they

to be included, how can one justify the exclusion of others merely because they happen
0 fall more definitely into one or other class? The RAR’s spatio-ternporal integration is

designed to be broad enough to suppress any gender-related pitch variations in any case,

hile the corresponding formant variations would be better handled by automatic clustering

of the data (based purely on acoustic evidence) rather than by the use of ‘biological’ labels,

which may group dissimilar acoustic signals together merely because they happen to have
been produced by speakers of the same gender.

    

   
   

   

   

   
5.2 Processing

Each phoneme was processed with the BAR programme, together with a small amount of the
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Table 1: Recognition results for all combinations of RAB parameters

preceding data (to avoid onsettransients). A single frame near the middle of end: phoneme
was then extracted and used for recognition. u

The RAR was calculated using 56 channels in the basilar membrane model, which were then

combined to produce 17 output channels, each with a reference frequency separated from 4

those of its neighbours by 200 Hz. The temporal and frequency resolutions were specified as

12.5 ms and 400 Hz, respectively.

5.3 Recognition

The recognition was performed by means of linear discriminants These were calculated to

give maximum mean inter-class distance for a fixed (unit) mean intra-class distance, evaluated

over the training set [8, pages 40—47]. Each class was then represented by the mean of all the

training data {or each class, and recognition performed by finding the nearest such mean to

each unknown point selected from the test set (in the linear discriminant sub-space).

Some preliminary tests were conducted which showed that recognition performance rarely

changed when the number of discriminants was increased above two. This observation was

reinforced by observation of the Eigenvalues used to identify the most useful discriminants:

only the first two were ever significantly greater than unity, indicating that they corresponded

to the only Eigenvectors which produced a useful degree of discrimination. However, the

experiments described here used three, just to be on the safe side. Note that this number

is lower than would be required for a more general phonetic recogniser, and is only this low
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because the number oi: classes is unusually small. It is anticipated that a number closer to
eight might be required [or more general applications (as was the casein, for example, [7]).

Recognition was performed separately for every possible combination of EAR parameters to
assess the degree of redundancy in the data. The results are shown in table 1.

6. DISCUSSION

Horn the results presented here, it appears that a simple linear classifier is probably inade
quate for speaker-independent recognition of context-free RAR data frames.

However, the indication offered by the ranking of the various combinations of parameters is
quite clear: the more alternative representations are presented to the recogniser, the better. It

also appears (from the higher ranked combinations, which seem to follow more definite trends)
that it is the unplitude-independent parameters which are most useful (as one would expect),
but that absolute amplitude does still significantly improve performance, when presented in
addition to the other data.

These conclusions are likely to be applicable to other forms of data as well, and it would
be interesting to compare these results with similar ones obtained via non-auditory methods
(linear prediction, group delay, filter-hank, etc.).

References

[1] S. W. Beet and I. R. Gransden. Optimising time and frequency resolution in the reduced
auditory representation. In Pmoeedings: ESCA Workshop, "Comparing Speech Signal
Representations”, ISSN 1018-4554, pages 101—8, ESCA, April 1992.

[2] S. W. Beet, R. K. Moore, and M. J. Tomlinson. AuditOry modelling for automatic speech

recognition. In Pmceedings: Institute of Acoustics, Speech and Hearing, Vol. 8, Pt. 7,
pages 571—9, IoA, November 1986.

[3] S. W. Beet, H. E. G. Powrie, R. K. Moore, and M. J. Tomlinson. Improved speech recog-

nition using a reduced auditory representation. In Proceedings: lCASSP—Efl, pages 75-8,

IEEE, April 1988.

[4] S. W. Beet. Automatic speech recognition using a reduced auditory representation and

position-tolerant recognition. Computer Speech and Language, 4(1):17-33, January 1990.

[5] M. P. Cooke and M. D. Crawford. The temporal evolution of spectral dominances in

an auditory model made explicit. In Proceedings: ESCA Workshop, “Comparing Speech

Signal Representations”, ISSN 1018-4554, pages 131—8. ESCA, April 1992.

Proe.l.0.A. Vol 1n Part 6 (1992)

 



 

Proceedings of the lnsiltute of Acoustics

INTERFACING AN AUDITORY MODEL. . .

 

[6] B. C. J . Moore and 133R. Gluberg. Suggested formulae in: calculating auditory-filter band-
widths and excitation patterns. Jaumal offilc Acoustical Society of‘Amen'ca, 74(3):?50—3,

September 1983. . .'

[7] M. J. Hunt and C. Lefiabvre. Speaker depdent and independent speech recognition

experiments with an auditory model. In Proceedings: ICASSP—BB, pages 215-8, lEEE,

April 1988.

[8] G. S. Sebestyen. Decision-making pmcesses in pattern recognition. ACM Managinph
Series, MacMillan. 1962.

82! PMJDA. Val 14 Part 6 (1992) I



 

' Abadjieva E
Ainsworth W A

Allerhand M
Alm N

Amano S

Angus ] A S

Arnfield S
Arnott] L

Baker K L
Barnes C M
Bee! 5 W

Benner M

Benton 5

Boucher L A ’
Bridle] S

Brown D

Brown C ]

Browning S
Butterfield S

Canning D
Carey M J

Carraro F
Cheepen C

Chiu W S C

Cooke M
Cutler A

Damper R I

Darling A
Dempster G

Dodd L
Downey S N

Dutton R

V Edginglon M D

-. Edmondson W

 

AUTHOR INDEX

487, 585

313, 399
281, 297

637

383
49, 101, 569

207
487, 637

601
49, 79

321
101
609

25, 257, 621
523
265
439
613
297

537
95, 351

109
273, 431

415
439

_ 297

519

289

249

523

181

553, 629

79, 569
369

Edwards K
Ellis E M

Faulkner A

Faure G
Foster] C

Garner P E

Ghali N

Ciguere C

Cillolt T

Goodrich T
Goodyear C C
Gransden I R
Green P D
Greenwood A R

Hiller S M
Holmes] N
Holmes W
House]

Howard D M
Huckvale M

lles ]

Jack M A
Jones C] F

Kadirkmanalhan M
Kapadia S
Ke‘w N R
Kowtko ]

Laver ]

Lee G E

Lewis E

Lickley R

9, 173, 199
407

289
545

553, 629

375
207
305
481
265
455
321

2'5, 257
455

109
133

1

577
79, 241, 375, 529

165, 289

359

199, 553, 629
329

141, 337, 343

157

25, 257

65

199

33
447

173

  



 

Linford P

Linggard R

Lloyd-Thomas H

Local ]
Love 5

Luk R W P

Mashari S J
Mellor B A

Meyer G F

Millar W

Milner B P

Monaghan J
Moore R

Morton K

Moye L

Murray I R

Mclnnes F R

Nairn I A

Nicolson R l
Niranjan M

Nowell P

Oglest 1

Palmer 5 K
Parris C I

Parris E S
Patterson R

Pawlewski M

Pearce D

Pont M ]

Pratt S R

Roach P

Robinson A ]

Rooney E J

Rosen S

Rossiter D

Russell M]

391
391
329
473

553, 629
519

117, 217
361
313
423
149

431, 645
613
189
87

487, 637
109

553, 629
601

343
523, 561

391, 423

577

_ 545

95, 351

281, 297

423
1

117, 217

399

207
407, 495

109
289

241, 529
17, 181, 503

Scolt C
Scully C
Shadle C H
Simons A

Simons A l H

Smyth S G
Stentiford F W M

Stringer P D

Slromberg K

Tatham M A A
Tang]

Tanersall G D
Tew A l

Tuerk C M

Valtchev V
Varga A P

Vaseghi S V
Vergeynst N

Watkins A J
Welch G F
White P J

Whiteside S P
Williams B

Williams S M
Wood L
Woodland P C
Wong D Y K

Wright] H

Wright R D
Wrigley E N

Young S ]

 

173
463
415

9, 173, 199
71
33

553, 629
57, 79

463

447
423
33
57

495

157
361
149

553, 629

125
225
225 \

511,621 A
41.233 31

601,621 ~
1

305
545
329
593
329

   

   

  

  157



   
ISBN 1 873082 41 x Book 1 (pp1 - 323)
ISBN 1 873082 42 8 Book 2 (pp329 - 651)
ISBN 1 873082 43 6 Set of Two

 


