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INTRODUCI‘ION

Previous work at 3.5.8.3. has shown that the resolution offered by conventional
filter-bank analysis is neither sufficient for accurate temporal modelling of
speech signals nor for reliable separation of speech from competing signals and
noise. In order to further investigate these problems. a software model of the
human peripheral auditory system has been implemented. based on that described
by R.P. Lyon [1. 2. 3]. Lyon's model. however. produces data at an extremely
high rate and it is consequently unsuitable for immediate use by current
recognition algorithms.

This paper describes a reduced auditory representation (R.A.R.). which
preserves the main characteristics observed in the output of the auditory
model. including the ability to resolve fine temporal and spectral detail
(without excessive disruption by individual pitch pulses). but which produces
data at a more acceptable rate. ‘

11-13 LYON AUDITORY MODE.

Many structures have been suggested for simulating the observed behaviour of
the human auditory system. but one of the most comprehensive versions to retain
computational tractability is that developed by Richard Lyon at Schlumberger
Palo Alto Research. This model approximates the behaviour of the inner ear.
while effects due to the outer and middle ears are largely neglected. The
latter are omitted from the model because they merely impose a fixed. albeit
position and environment dependent. pectral distortion on any signal and it is
known that human perception is relatively insensitive to such distortions.
Furthermore. since the input to the auditory model is derived from a single
microphone subjected to a complex sound field within a generally unknown
environment. it would not be practical to include an accurate model of these
parts of the system: the only way of incorporating such effects. short of
measuring the whole soundfield with an array of microphones. would be to mount
a single microphone inside a physical model of an ear.

Lyon's model has been described at various stages of its development and there
have often been significant changes between each publication. However. what
follows is a description of the main features of the most recent version
(unless stated otherwise).

The bsgilar membrane model

In his earlier papers. Lyon modelled the basilar membrane using a
cascade/parallel filter bank. preceded by adifferentiator [i]. The cascade of
notch filters simulates the propagation of a pressure wave along a simplified
(single-dimensional and reflectionless) model of the basilar membrane. while
initial differentiation. together with the parallel resonator sections. model
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the transformation from pressure to basilar membrane displacement. A further

anti-resonance is introduced into each output at half the resonator's centre

frequency in order to model the measured phase response of real auditory

systems more accurately.

Lyon later simplified this part of the model (by modifying the notch filters

and omitting the resonators [3]) so me to reduce the computational load. but
the R.S.R.E. implementation has retained the original form to ensure a more

realistic approximation to the physical system. ‘

Qmamic rangg compression

Before the basilar membrane displacement is converted to neural firings.
several effects observed in the human auditory system are simulated by three

layers of dynamic range compression. each with a different rate of adaptation.
The effects thus simulated are the stapedial reflex. lateral suppression.

firing rate adaptation and the exceptionally wide dynamic range of input

signals which can be handled by the system. The algorithm which Lyon

originally suggested was found to be potentially unstable. so he later

developed a stable. recursive form which adjusts the gain of each channel so as

to compress the overall dynamic range while maintaining local contrasts [2. 3].
This has a speed of adaptation determined by a single parameter chosen to match

physiological observations. Additional factors are introduced into the
algorithm to ensure a smooth gain profile across the membrane. reproducing the
'phanomsnon of lateral suppression. The strength of this suppression is

determined by two parameters. one governing the suppression by signals in

channels closer to the apical and of the membrane. while the other governs
suppression by those closer to the basal end.

The hair celllneuron model

The ultimate firing of the neurons is attributable to the flow- of current

through the inner hair cells [‘O] and it is thought that this current flow is
modulated by the deformation of these cells causing their resistivity to change

(there is an approximately constant potential difference between the fluid on

either side of the basilar membrane. so any changein resistance will produce a

modulation of the current flow through that cell). The current flow is

integrated (to simulate the accumulation of ions within the cell) until the

'neuron' fires. producing an output event and removing the 'accumulation of

ions' by resetting the integrator's stored potential.

This level of the model has a binary output (whereas the information present in

the earlier stages is in the form of a continuously varying function of time)

so the information is coded in a purely temporal form. This is the first stage

in the model which cannot be analytically inverted. but in the human auditory

system there are a very large number of afferent neurons. allowing the original

signal to be characterised unambiguously. It is impractical to compute the

earlier stages of the model at the required number of points along the basilar

membrane. but this restriction can be partially overcome by attaching more than

one 'neuron' to the output of each 'hair cell'. Bach neuron is set to have a

slightly different (randomly selected) set of parameters so that the firing

events will occur at different times. Thus. although some of the ability to
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discriminate between closely spaced frequencies ay have been lost. the
information at the preceding level will havebeen adequately coded.

THE REDUCED AUDITOR? HEPREENI‘ATION

Lyon's model has been used to analyse various signals including a limited
amDunt of natural speech. an example of which is shown in figure 1. This is
taken from the utterance "two". the output of each major step in the process
being shown separately. The input waveform is plotted across the top of each
band and it is clear that the time taken for the model to respond to any onset
is very short and that the temporal resolution is thus Very Fine. Several
Features of the signal are made explicit by this processing and some aspects
are visible in here than one form. For example. the first formant is visible
(prinarlly during the later. voiced. part of the display) both as a disruption
in the coninuity of the pattern about a third of the went up each display and as
the temporal modulation of neuron firings over a large portion of the model (at
those points where no other signal dominates).

Reducing the data rate

It is assumed that the data produced by the auditory model contains the
'relevant‘ aspects of any speech signal in a more explicit form than
conventional analyses and would ultimately lead to improved recognition
performance. However. current computational constraints prevent the direct use
of the vast amount of data produced by such an analysis (about 30 Mbita per
second). Therefore some form of downrsampling is required and this should be
chosen so as not to disrupt the structure introduced by the preceding analysis.
In order to achieve this reduced auditory representation. one has to define

exactly what constitute! ‘structure' and at this point some gross
aisplificationa are made so as to ensure that the analysis process forms a
reasonably cohesive whole and. is mathematically concise:

1) Individual neuron firings are not calculated; the most reliable indications
of a signal's Pmperties are assumed to be the result or multiple neural
events and therefore global statistics of those events can be used to
characterise the signal.

The observed ability of a neuron to fire in synchrony with a subharmonic of
a signal is ignored. This may degrade the analysis' ability to detect a
common harmonic structure in different channels. but allows considerable
simplification .

The main cues to the identity of the various components in a composite
waveform are assumed to be the neural firing density at each point along
the membrane and any periodicity in those firings.

Although the phase relationship between adjacent points on the membrane say
be used by the human auditory system, it is not likely to be critical to
the analysis of speech since such signals are perceived clearly even when
subjected to quite severe phase distortion. Such relationships are.
therefore. ignored.
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Figure 1: Auditory-nodal outputs in response to the first 200:3 of the

utterance "two". ?aaitive displacement in denoted by whita arena. negative by

black.

A: Banilar lelbrene displacement
B: After dyna-ic 1-ng compression
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Figure 1 (Continued)

0: Hair cell current. flow
D: Neuron firings
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These simplifications are all naive and it is quite possible that significant

information still be lost as a result. However. some such assumptions must be

made if a practical method is to be developed and these allow an analysis to be

performed which is superior to conventional filter-bank analyses while

retaining close links with some of the more traditional concepts in speech

analysis. Furthermore. it is expected that some of the simplifications will be

charmed or removed altogether when more experience has been gained.

Simplifications l and 2 allow the actual neuron firings to be ignored and the

analysis to be based purely on the preceding levels of the model (neural firing
rates and any periodicity therein can be estimated without calculating

individual events). 3 and Ii suggest that the functions which are to he

down-sampled need only be capable of yielding an estimate or the amplitude of
the signal at each point on the membrane together with some corresponding
manure of frequency. However. the euphesil which the neuron firings would

have given to onsets and spectral discontinuities should be retained. This is

most readily achieved by producing parameter estimates at each instant and then
calculating a weighted mean of the resultant values based on the expected

neural response. If this approach is used. continuity from one time frame to

the next can be ensured by allowing the frames to overlap and introducing an
additional weighting factor. typically consisting of a raised-cosine window.

As regards the detection process. it seems likely that the human auditory
system uses ‘the deformation of the hair cell siply because that mechanism is

the most efficient physiological solution. This stage of the auditory medal

does not appear to reveal any significant features in the compressed membrane

displace-ant and so a superior detection process can be used.

At this point. it is further assumed that the output or each filter will

essentially consist of a summation of a number of modulated sinusoids
(typically those harmonics of any periodic signal which are contained within

the filter'a pass-band). This is reasonable. even when the nodal is being fed

with broad-bun! noise. because the basilsr membrane will introduce large

amounts of correlation into the signal. One of the simplest ways of measuring

the instantaneous amplitude of a single modulated sinusoid is to produce the

equivalent analytic aims]. (via the Hilbert transform) and evaluate its

aagnitude. Siailarly. the frequency can be measured by dividing the derivative

by the analytic signal itself:

1 dSA(t)

 

um - Isnml ; um - x. (1)
sAtt) dt

where a(t) is the amplitude. wit) is the angular frequency and s (t) is the

analytic signal derived from the output of each filter. all being functions or

time. t.

These functions yield aeaningl’ul values when the signal under consideration can

be considered to be a single modulated sinusoid. However. if it can only be

realistically represented as a composite waveform. the values produced can

exhibit extreme local variability and will beunsuitable for down-sampling.

Therefore it is proposed that the following hmctions should be evaluated and
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down—sampled :

2visa”)
(2)wt) - ISAH) [2 : d'm -

dt

If these expressions are estimated from a large number of consecutive samples.

yielding 5(t) and d(t). than Ht) will be a weighted mean square of the
amplitudes of all the components contained within the analysis frame.
Similarly. a weighted mean square of the frequencies of the components can be

produced by evaluating

2 am
an) I '——— (3)

5(t)

When calculating 8(t) and d(t). a neural weighting function should be used
which will make those estimates reflect the emphasis placed on each instant by
the number of neurons which wouldhave responded at that time in an 'ideslised'
auditory system. It is assumed that such a system would contain an infinite
number of neurons and that the number firing in response to any onset would be
proportional to the amplitude of the signal at that time. It is further
assumed that an ideal form of dynamic range compression would cause the number
of neurons responding to a steady signal to decay exponentially with time. Now
the expressions for a'(t) and. d'(t) are inherently weighted in favour of large
amplitude signals, so provided that dynamic range compression is performed

before the parameters are evaluated. no additional weighting factor is required
(except for that due to the sliding window mentioned earlier). However.
dynamic range compression can affect the spectral purity of a signal (by

temporal modulation of the original function) so it would he better if it was

replaced by afurther weighting Factor which wouldreduce the effeCt of any

stationary components. Such a factor should counteract that due to the
signal's amplitude as a steady state is approached. the obvious choice being

the reciprocal of a smoothed estimate of the signal amplitude based on its
previous values and those of the more apical sections of the filter (to

simulate temporal and upward masking).

Thus all the parts of the original model. except the initial basilar membrane
filtering. have beenreplaced by idealised forms and the resulting parameter

estimates may well reflect those which the ear would produce if it were not

limited by physiological considerations. The filtering has not been altered

because the original model has provided a computationally efficient method for

achieving the required result.

murmurs OF THE R.A.R. ANALYSIS

The reduced auditory representation or a segment of speech is shown in
figure 2. Again, the input wevefom is shown across the top of the picture.
with the amplitude and frequency parameters displayed in the two bands below.

The amplitude display covers a range of about. 6063. while the frequency values
are normalised for each channel so that white indicates the presence of a
dominant signal near the top edge of each filter's pass band and black
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indicates one with less than a third of that frequency.

Input

Ampli tude

Frequency

 

“it‘s

Figure 2: R.A.R. of “An apple a day keeps the doctor away.“

It can be seen from this picture that the frequency information provides the

clearer indication of the location of spectral peaks. but the amplitude must

also be used to differentiate betueen some classes of signal. In addition.

information about the shape of any spectral peaks can be obtained by comparison

of the tun forms of output. For ample s. broad spectral peak will produce

bright areas on both displays at about the "Ia point. while a pure tone will

produce a high frequency estiute nearer to the apex than the corresponding

peak in the amplitude estimate. Teaporal onsets can also be characterised in a

similar way (abrupt onsets show a high frequency estimate before the amplitude

has risen significantly).

An additional feature of the analysis which is not so obvious from the picture

is due to the neural weighting function used to produce the parameter

estimates. This acts as - a bias which emphasises those components in each

filter's output which are unexpected (in terms of its previous outputs and

those of its apical neighbours). This aids in the resolution of proximate but

distinct signals and should be beneficial to the discrimination of complex

sounds produced by independent sources.
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CONCLUSION

The R.A.R. _analysis produces clear cues to thelocation of formants. but it ‘
also. has several new and interesting properties which should provide improved

speech recognition performance. The main features are the absence of any
amplitude dependence in the frequency estimates(making the resultant patterns
relatively immune to spectral tilt and amplitude variation) and the ability to

resolve fine temporal and spectral detail. These features will be especially
important for speech recognition if the signal has been corrupted by spectral
distortion or the addition of extraneous signals. as is often the case.

Furthermore. the physiological base from which the analysis has been derived
leads us to expect that the features which it reveals should be more

perceptually relevant and therefore better suited to application in a
hiya-performance smack- recogniser. -
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