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Introduction

The traditional ad hoc method for classifying bell partials [1,2] is to quote
the number ofnodal meridians 2m and the number and position of nodal circles
n (e.g. one circle near the rim) for the component modes, where n, m = 0, l,
2, . This has never been satisfactory because of the anomalous position
of the Hum. being the only partial with no circles. We have found that there
are also problems with numerous high partials, probably unknown to earlier
workers, with a variety of numbers and positions of rings. Clearly a better
understanding of the mechanisms responsible for the various modes is required
in order to replace the ad hoc scheme by one with a sound physical basis.

 

We have taken a good quality modern English church bell and measured the
frequencies and nodal patterns for all the partials up to about 9 kHz as
accurately as our equipment would allow. Accurate measurements of the geo-
metry of the hell were then made and used as the basis for a finite element
calculation of the normal modes. The hope was that we would be able to match
up experimental and theoretical modes and so decide the physical nature of
each experimentally found partial by looking at the finite element solution
for its form. Families of partials should then be identifiable on a sound
physical basis. At the time of writing we have successfully classified all
partials with four or more meridians in this way. Those with zero or two
pose a special problem because the effective boundary conditions on crown
motion are different for them and we shall not consider them further here,
especially as they are usually reckoned to be of little acoustical importance.

The Compa rison

Since the number ofnodal meridians 2m is confidently known both experimentally
and theoretically one might expect to be able to write down two lists of
partials for fixed 2m and simply pair them off in sequence. In practice it is
not so simple because: (1) a given partial may appear more than once in the
experimental list because it had not been realised that the doublet had become
split, (2) some partials may be missing from the experimental list for any one
of several possible reasons, (3) theoretical frequencies are expected to get
increasingly too high as one goes up the sequence, (4) experimental ring
positions and numbers may be unreliable, especially above the shoulder and
when n is large, (5) the sequences should be roughly the same in the two lists
but two consecutive theoretical modes may come out in the wrong order,
especially if their frequencies are close and they are of different physical
types. In the table we list results for the case of 8 meridians as a typical
example. Theoretical mode numbers l-S and 7-9 are matched well.
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[Lode Froqucncy (H:) Class Hodc Frequency (52) Class

number Theory Experiment (R) Hurber Thezry eriment (E)

  

1 use 1172 ' RBI (-1) a 60:7 5769 a

2 14c5 1473 '1 9 ease [>516 7

3 1962 19:9 2 10 7133 - RER(d)

4 2840 2232 3 11 7989 7924 e

5 3909 3567 4 12 8201 7633 a

6 4367 :22: an (o) 13 9008 — Y

7 5031 4997 5 14 9752 8968 9

 

The experimental partial corresponding to mode 6 has been quite badly split.

while numbers it) and 12 are missing. Numbers 11 and 12 have come out the

wrong way around, a fact which can be ascertained by making a careful compar-

ison of theoretical and experimental ring positions.

The classification

Examination of the finite element solutions shows that there are two broad

categories of mode: (1) primarily in—azimuthal-plane but some some out—of—

plane motion (apart from m = 0 cases which are pure breathing modes).

(2) primarily out-of—azimuthal plane bet with some in—plane notion (apart

from m = 0 cases which are pure twisting nodes)‘

The primarily in-plane modes divide into "ring" driven and "shell" :iven.

For a given Value of 21: there is always one- partial which corresponds to the

heavy ring on the rim of the bell going into its inextensional radial mode

[3 l. and driving the shell along with it. Consequently the number of nodal

rings varies with 2n depending upon the details of the nearest "Shell alone"

made. This family, which includes the notorious Hun, we designate RIR (or

alternatively R = -l for reasons to be explained later). A second "ring"

driven mode for each value of 2m corresponds to the heavy ring going into its

axial mode. These we designate RA (or alternatively R = O) and again they do

not correspond to a fixed number of nodal rings. and for the same reason.

The remaining "primarin in—plane" modes, which fort. a large majority in the

region up to 9 kHz, are all essentially due to the shell going into its

inextensional radial modes with the heavy ring at the rim being almost at rest

and supplying a nodal ring close to the rim. For a given value of 2m there is

a sequence of these nodes having 1, 2. 3, nodal circles which we designate

as R = 1, 2, 3. For low values of R the crown is essentially at rest.

playing a si ilar role at the top of the bell to that played by the heavy ring

at the bottom. However. when R has increased to the point where the wave-

length of the standing waves has become comparable with the crown din nsions

then the Cram behaves as an integral part of the "shall", subject only to the
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constraint (for 2m > 2) of a node at the very top. The value of R at which the
crown "takes off" increases as 2m increases and nodal circles arise above the
shoulder only after this point has been passed. Further evidence for the

existence of a family relationshipamongst these modes, over and above the

"theoretical" evidence of the finite element calculations. comes from three
different ways oflooking at the experimental data: (1) plotting the positions
of nodal rings lR v 2m for fixed R shows R smooth curves in each case,
(2) plotting 1R v R for fixed 2m shows a characteristic pattern which varies
very little with 2m, (3) plotting f v R for fixed values of 2m yields a smooth
curve which is better than can be achieved with any other ordering or combin—

ation of modes with that value of 2m, with a kink at Rk'm in the region
corresponding to the crown "take-off". If one plots log f v R then the curve
for fixed 2m is replaced by two straight lines which intersect at the point
previously occupied by the kink: the analogy with phase changes in thermo-
dynamics is obvious. lf the value of 2m is changed a new pair of straight
lines is produced parallel to the originals but with the point of intersection
moving to a value of R which increases from its previous value by unity each
time m increases by unity. i.e. 111"“. = Rk'm + (m' - m).

The modes which are primarily out—of—plane are relatively high in frequency
and difficult to excite. the latter fact being responsible for a relatively

high proportion of them being missing from the experimental list. For a
fixed value of 2m there is a Sequence of these modes having an increasing
number of nodal rings for out—of—plane motion. we designate these as a, E,
y, .,.. The first of these is due to the heavy ring at the rim of the bell
going into its extensional radial mode and driving the shell with it, so we
give it also the alternative designation of RER. The others are due to
various other ring components of the bell going into the extensional radial
nodes in a similar way but the picture is extremely complicated.

To understand why we have given the alternative designations of R = -l and 0
to the RIR and RA modes it is necessary to reconsider the graphs of f v R for

fixed 2m, What we find is that if the curves are extrapolated back below
R = 1 then the RIR modes lie neatly on these curves for the R = -1 position.

Clearly R = -l has no physical meaning. Likewise for the RA modes using
R = 0 but this time only if we use the mode with (2m - 8) meridians!

Discussion

We have produced a classification scheme which accounts for every observed
partial for Zn > 2. of the five musically important partials (i.e. those
normally tuned by English founders [4 I). three are of type a = —l (the Hun,
the Tierce and the Nominal) and two are of type R = l (the Fundamental and
the Quint). There is no family connection between the R = -l (or RIR) and

the R = 1 modes so the fact that the former fit smoothly onto the f v R
curves for fixed 2m is almost certainly a "deliberate" consequence of bell
design. This is reasonable since one of the chief considerations of bell
design is to get the relative frequencies of the five "musical" partials
correct. Having “fixed up" the lower members of the R a -1 and R = 1 fan-
ilies in order to achieve this it is not surprising that the "smooth" relat-
ionship thus built in for Zn = 4. 6 and B carries on up through the spectrum
for higher values of Zn.
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The smooth fit of the R = 0 modes is almost certainly fortuitous. It may be

that it is needed to reduce discord from some higher partials but this seems

unlikely. For a given mechanical ring there is a definite relationship

between the inextensional radial and the axial modes. Thus once the bell

shape has been picked to fix the RXR modes (R = -l) the R = D will be fixed

automatically.

Conclusions

By combining accurate experimental measurements with Einiteelement calculat—

ions we have been able to produce a scheme of classification which works well

for all cases with more than two meridians. The physical nature of the

partials belonging to the various families has been established and some

insight gained into the process of hell design. Work is proceeding on the

extension of our scheme to cover the cases of zero and two meridians.
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