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1 INTRODUCTION

When operating in underwater environments, AUVs can be expected to encounter a wide range of previously-
unseen Man-Made Objects (MMO) as well as unfamiliar types of seafloors. In the context of Mine Coun-
termeasure Missions (MCM) in particular, ATR algorithms are typically trained using large amounts
of data to capture prior knowledge on specific environments. In order to achieve high detection rates
while minimising the need for operator input, the algorithms are typically optimised for a specific sensor
payloads and a particular set of objects of interest. This results in high-performance but also highly-
specialised algorithms. In practise, the ever-changing environments of deployment of autonomous systems
often require rapid adaptability to new types of man-made objects. While traditional machine learning
algorithms can take between a few hours up to a few weeks to retrain on new datasets, it is not always
possible to retrain an algorithm in-situ. In order to address this problem, we present a sensor-agnostic
approach to the development of generic man-made object detection algorithms. Using a combination of
simulation techniques and open-source datasets, we present a method to build a generic dataset, suitable
for training DNN-based object detection algorithms. Using both qualitative and quantitative experimental
results, we demonstrate the suitability of the approach for detecting previously-unseen man-made objects
in previously-unseen sidescan sonar sensor data. We introduce an operator workflow to aid in-situ review
of the data. We finally discuss the performance and practicality of such algorithms in comparison to
traditional highly-specialised MCM algorithms. Finally we discuss the potential field applications of this
approach such as performing change detection for monitoring of underwater man-made infrastructures.

2 LITTERATURE REVIEW

Early work on the detection of man-made objects' was based on separate classification and detection steps.
The detection stage was typically based on segmentation, clustering or markov random fields? approaches.
The classification was often achieved by performing matching geometric models to the segmented shape.
In situations where further information on the shape of the object is available, a CAD model library can be
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generated and employed as prior knowledge for detection and matching in sonar data3. All these methods
require prior knowledge in the form of parameters that are typically tuned to the objects of interest. The
potential of algorithms achieving better performance than expert human operators at the task of detecting
man-made objects was also demonstrated in. Over the last few years, Deep Neural Networks (DNN) have
superseeded model-based approaches in most computer vision research fields. These models effectively
trade the learning of explicit models for large sets of multi-scale 2D filters that are learned from the data
through backpropagation®. In particular in the domains of object detection and classification, DNNs
achieved state-of-the-art performance®7” on benchmark photographic datasets. Likewise in the underwater
domain, a Resnet-based Retinanet model was employed to detect boulders in sidescan data®, showing the
ability to detect small patterns with a similar level of performance as a human operator. A TR-YOLOv5s
model was employed in? to demonstrate real-time object detection in sidescan data. A yolo model with
a transfer learning approached was used in'?. The performance of detection algorithms being notoriously
sensitive to the complexity of the environment 12, the reliability of algorithms when deployed on the field
can be obtained either throw online domain adaptibility or the training of generic models. Through data-
mining and sparse supervision, domain-specialised sidescan ATR algorithms have been shown to benefit

from fine-tuning to operational conditions!3.

3 METHOD

In order to mitigate the uncertainty on the environment of deployment of our algorithms, we create a large
dataset by combining simulated and real datasets of various sources.

3.1 Sidescan sonar simulation

We generate simulated sidescan imagery using two different sidescan sonar simulation frameworks. The
first framework !* provides realistic seafloor simulation by modelling seafloor patterns with wavelets. As
illustrated in figure 1, the simulator can generate seafloors of various types and material including sand
ripples, marine growth and rocky clutter. These types can be combined by adding multiple layers on top of
each which allows for generating seabeds of various levels of complexity. The intensities are then rendered
using a raytracing process with a Lambert model as reflection model and a Rayleigh model as environment
noise model. The sound speed is assumed to be constant and set to 1480 m/s. The transmission loss is
computed using the sonar equation, on the basis of a sensor operating at 600 kHz.

() (f) (g) (h) (i) ()

Figure 1: Tllustration of different types of seafloors generated with our sidescan sonar simulator: low-
frequency (a) and high-frequency (b) ripples, marine growth (¢) and rocky clutter (d). 6 basic shapes can
be inserted: cones (e), wedges (f), cylinders (g), paralelloids (h), hemispheres (i) and upright cylinders (j).
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Our second simulation framework enables the insertion of CAD models on top of real sidescan sonar
data'®. The 3D models are rendered by first estimating the local bathymetry around the point of insertion.
Following this a raytracing step is employed to generate sidescan-looking intensities using a similar process
as in the first simulation framework. A sensor noise model is then added and a refinement step based on a
Generative Adversarial Model (GAN) can then be optionally applied to match the appearance of specific
sidescan sensors. In order to build a dataset with a diverse set of man-made objects, we collected around
100 different open-source CAD models available online!®. As can be seen in figure 2, the models represent
a diverse set of man-made objects, in particular: some mine shapes, UxOs (Unexploded Ordnance), lobster
traps, AUV (Autonomous Underwater Vehicle), ROV (Remotely-Operated Vehicle), tyres, anchors, various
containers, buoys, divers, baskets, ship and plane wrecks, pier items. In order to represent difficult seafloors,
a few CAD models of rocks and corals were also employed.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 2: Simulated sidescan images of various CAD models of man-made objects: anchor (a), crate box
(b), boat (c), gas tank (d), diver (e), ROV (f), AUV (g), floating mine (h).

Using these two simulation frameworks, we generated 200GB of sidescan sonar data following different
navigation patterns and inserting objects in random locations and orientations to obtain observations at
different ranges and angles. The data was generated at 2cm x 2cm resolution.

3.2 Open-source real datasets

The simulators described in the previous section generate data at arbitrary resolutions and ranges without
taking into account all of the physical limitations encountered when using real sensors. As opposed to
this, real sidescan sensors operate at a specific frequency and range. The speed of vehicle is then set
based on the characteristics of the sensor and the desired range and resolution. The imagery delivered
by real sensors is then characterised by frequency-specific noise patterns and resolutions. In addition to
these characteristics, our simulated frameworks do not model for artefacts due to the presence of other
acoustic devices (such as other sonar sensors or acoustic communications). Real datasets often exhibit the
presence of fish in the watercolumn or so-called surface-returns created by the sea surface when operating
in shallow waters. In order to include these elements in our training set, we employed open-source datasets
found using Google dataset search tool'”. These datasets ®19,20,21,22,23 contain sensors from several sonar
manufacturers (Klein, Edgetech, Marine Sonics) and feature various resolutions (3cm to 15cm across-track
resolution) and ranges (30m to 100m) with a total of 260GB. The vast majority of these datasets is

composed of seafloor-only data with a few images of shipwrecks?! and mines??.

3.3 Training of a DNN-based MMO detector

As shown in figure 3, we combine simulated, hybrid (real seafloor with raytraced CAD models inserted) and
real datasets together to form the training dataset to our MMO detector, with a total of 4000 observations.
The combination is done at training time, randomly sampling images with an equal balance of images
containing man-made objects and seafloor-only images.

Using this large training dataset composed of simulated and real data, we train a DNN model with a
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Figure 3: A large training dataset is obtained by combining simulated, hybrid and real datasets with a
wide range of sensors, seafloors and man-made objects.

Resnet18 backbone using a small amount of augmentation in the form of geometric (affine) transforms,
noise and dynamic range augmentation. The model is trained at a resolution of 4x4cm to allow for detecting
objects with sizes in the range of 20cm up to a few meters.

4 EXPERIMENTS

In this section we provide qualitative and quantitive results obtained when evaluating the MMO detector
on real datasets. Importantly, these datasets feature objects that were not represented in the training set
to evaluate the capacity of the detector to generalise to other types of MMOs.

4.1 MMO dataset

The first dataset is a dataset composed of 40 real sidescan images containing MMO of different kinds.
These images come from publicly-available sources 2425 and feature various sensors coming from Edgetech
and Klein sonar manufacturers. Figure 4 shows the detections returned by the trained detector on different
types of man-made objects.

Most of the MMOs present in these images are detected with a high level of confidence, including the
objects in images 4-de,f,g which are types of objects that were not included in the training dataset. Image

4-a shows a missed detection (green box in the nadir area with very faint features) as well as a false alarm
(white box in the top right corner) on a dredging mark on the seabed.

4.2 Human body dataset

The second dataset was provided by HEART?¢ (Hutterian Emergency Aquatic Response Team), a char-
itable organization specialised in search and recovery of drowning victims. The dataset is composed of 3
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Figure 4: Detections (white boxes) obtained on real sidescan images featuring different types of MMOs
(ground truth labels as green boxes). The first row of images (a,b,c) features containers of shapes that
are similar in appearance to the MMOs simulated in the training set. The second row shows MMOs that
were not present in the training set: a bicyle (d), a plane (e), an antenna (f) and a triangular mine (g).

missions acquired with a Marine Sonic sea scan HDS towed system and a total number of 51 observations
on human bodies. The towed system was employed to survey 3 lakes in Saskatchewan, Canada. As visible
in figure 5, the model successfully detects the human bodies present in the dataset despite the lack of
highlight in their appearance.

g A L

(b)

Figure 5: Detections (white boxes) and ground truth labels (green boxes) obtained on real Marine Sonic
sidescan sonar images featuring: a human body (a), man-made-object-looking clutter (b) and rocks (c).

Although some CAD models of divers were included in the simulated training set (see figure 2-¢), it should
be noted that their appearance was significantly different as these were rendered with a much sharper
highlight in comparison to figure 5-a where only the shadow is visible. As visible in figure 5-b,c, the MMO
model returns detections on unmarked seabed items such as rocks with angular or mine-like features.
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4.3 MMO detection performance and comparison to a traditional ATR

In addition to the qualitative results shown in sections 4.1 and 4.2, we perform a quantitative evaluation
using a set of ground truth labels for each dataset. Based on these ground truth labels and the detections
returned by the MMO detector, we derive the PD (Probability of Detection) and number of FA (False
Alarms) per square kilometers. These two metrics are computed at various levels of confidence to generate
a ROC (Receiver Operating Characteristic) curve on each dataset. In order to provide a baseline, we first
plot the performance of the MMO detector on the large simulated dataset used for training the model as
represented by the blue curve in Figure 6. The performance on the real MMO dataset described in section
4.1 is represented by the green curve and the performance on the human body dataset described in section
4.2 is represented by the red curve. In order to show the difference in confidence of the model on each
dataset, asterisk markers are placed to represent the performance at a given level of confidence (0.17). In
order to compare the results obtained by our MMO detector with a traditional mine-hunting ATR, we
trained the same DNN on a dataset composed of simulated backgrounds and real mines?? with no other
man-made objects. This ATR model was evaluated on the real MMO dataset and is represented by the
dashed green curve, showing a PD that is 30% lower on average than the MMO detector.
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— MMO_detector_on_real_MMO_dataset
- MMO_detector_on_real_MMO_dataset (threshold=0.17)

- - traditional_ATR_detector_on_real_MMO_dataset
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+- MMO_detector_on_body_dataset (threshold=0.17)
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Figure 6: ROC curves achieved by the MMO detector on three datasets: training set with simulated
MMOs (blue), real MMO dataset (green) and human body dataset (red). On each curve an asterisk
marks the point corresponding to a confidence level of 0.17 to show the difference in performance for a
given confidence level. The performance of a traditional (mine-hunting) ATR algorithm on the real MMO
dataset is represented by the dashed green curve, showing a lower PD than the MMO detector.

5 DISCUSSION / ANALYSIS

The results presented in section 4 demonstrate the ability to detect previously-unseen MMOs in real data.
For a given level of confidence (asterisks on figure 6), the model achieves higher PD on the simulated set
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than on real data. This can be expected due to the differences in appearance between real and simulated
targets which are typically sharper and feature brighter highlights than real targets. When processing real
data, high PD is then obtained by operating a lower levels of confidence which results in higher number
of false alarms. These false alarms can be mitigated by performing post-mission analysis with a trained
operator. Practical MCM missions follow rigurous ConOps (Concept of Operations) that rely on multi-
pass surveys. The fusion of multiple views can be operated based on contact type, size and location to
reduce the number of false alarms. Using clustering techniques!!, frequent artefacts due to the presence
of acoustic communications, local fauna or sand ripples could then be processed jointly to speed up the
review process by avoiding the need for reviewing each detection independently.

As opposed to the approach presented in this paper, traditional ATR algorithms are typically trained on a
small and specific set of mines®. This leads to high PD / FA rates but comes at the cost of not being able to
detect other types of man-made objects, as shown on figure 6 when comparing the two green curves on the
real MMO dataset. The ever-changing scenarios that can be encountered on a field of MCM operations
require adaptability to previously-unseen environments. While this can be achieved through acquiring
data on the new domain and retraining a specialised ATR algorithm, this is an expensive operation and is
likely to require a significant amount of time. In this context, the experimental results show the benefit of
employing models trained on larger sets of objects to detect previously-unseen data. These models could
then be employed by an operator to compensate for the lack of adaptability of traditional ATRs.

6 CONCLUSION

The approach demonstrated in this paper shows that a DNN-based model can be trained on a generic
dataset using a combination of simulation tools and open-source datasets to detect previously-unseen
man-made objects in real sidescan sonar data. The experiments demonstrated the suitability of simulation
tools to train models that perform well on real datasets. We also showed that this method can be used as an
alternative to the expensive retraining of specialised ATR algorithms on new domain data. This approach
provides a higher level of adaptability than traditional ATR algorithms at the cost of some false alarms
detections on complex seabeds such as rocky clutter. The capacity to detect a larger range of objects than
traditional ATRs benefits to landmark-based applications such as relocalisation and autonomous decision
making on board of AUVs. Future work will leverage the ability to detect generic man-made objects by
investigating change detection in the context of monitoring subsea infrastructures.
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