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1. INTRODUCTION

Many situations arise in which the control of vibration is necessary; for
example, reciprocating machinery may transmit large pericdic forces which
result in excessive vibration levels at another point. In space structures,
vibration may cauaes problems where high accuracy 1s required in devices such
as space talepcopes or satellite transmission systems. Two broail categories
of vibration control sysr.ems exist: passive systems which contain energy
atoring and dissipative mmomnta and active systems which use secondary
sources of energy to attempt to reduce the overall syatem energy in some
pre—determined way. In many situations, use of pagsive methods of isolation
will give a.dequate Tesults, Active contml, however, may be used to good
effect in situations where pasaive gystems are less efficlent, such as at low
frequencies, or where use of passive ‘methods would lead to the addition of too
much masa to a systen. In addit.lon. an active system can be made "adaptive”
ao that parameter variations may be tracl:ed. and for deterministic inputs in
particular, the B?Etem may actually "preview" the disturbance and then attempt
to control it in some way. .

The active control of vibration has been congidered in many areas, These
have ranged from its use to contiol transverse vibrations of circular saw
bladea [1] to actlve vibration isolation of parts of a helicopter fuselage
[2). Ita use has also been oonsidered in the control of tall buildings [3]
and has been pmpoaed for the contrel of ll.ghtly-damped gpace astructures
{4.5]. In moat cases, the overall control strategy is similar, consiating of
the feedback of gome measured variables in such a way as to either alter the
modal characteriatics of the structure {6) or to synthesise an opposing force
in an attempt to cancel out the vibration completely.

The work presented in this paper shows the alteration of the modal
parameters {damping ratio and natural frequency) of the fundamental mode of
transverse vibration of a cantilever beam, using feedback control
techniques. The equation of motion is solved for the beam, yielding the

‘usual series of natural frequencies and mode shapes, 1In order to use

" feadback control on a simplified model, this multi-modal aystem is then
congidered as a single fundamental mode plus a residual contribution from the
higher order modes. Use of series expansions allows an evaluation of the
regidual term, which 18 shown to be small by comparison with the responas of
the beam at its fundamental frequency. By making this agssumption, and also

- by careful deaign of the experimental apparatus, the modelling of a cantilever
bean as a single degrea of freedom system is justified. Using this modal, the
theoretical alteration of natural frequency and damping ratioc may be aimply
illustrated, from which the design of a proportional-plus-integral-plus—
derivative (PID) controller to perform this task la proposed, It 18 shown
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that in order to perform this experimentally using a digital control system,
accurate integration must ha-perfozmd dl.g:l.:al.l.y.

The design of such integrators is shown to be more complex than is .
suggested by previous theoretical work, and the final version ia deaigned in
.order to account for time delays within the digital system due to sample—hold

devices on the output gtages of the system. Other deaign spproaches are
described and the results obtained (in terms of frequency response magnitude,
phase and stability) are given, The PID contruller 18 used to alter the

. natural frequency and damping of the fundamental mode of vibration of the
cantilever beam systef deecribed ecarlier. ' .

z. THEORY

2.1 Fquation of Motion

The equation of mdt.l.qn of a uniform beam in transverse motlon (7], subject
to an applied force ' £(x,t) is: A : .

Y\ g O L gyt e
BI T +m 7ct = f(x,t) . _ {1)

where y represents the transverse displacement (m}), X representa the
distance along the beam (m), E is the Young's modulus of the beam {N/m%),

I 18 the second moment of area of tha Deam (m*) and m 1s the mass per unit
length of the beam (kXg/m).

This equation may be shown to have a solutlon of the form
. O. )
¥xt) = L Qnlt)dn(X) : {2)
n=1 ’

" wnere gp(t) represents a generalised coordinate, and ¢n(Xx} the mode shape
function. It is seen that the theoretical solution considers the beam )
response to conaist of an infinite number of modes of vibration. Obwviously.
for the purposea of any practical system model, the number of modes congidered

must be reduced. The modal seriss expansion of equation (2} may be written
. in the form ’ . .

(xoxpwy = b —plentEoentnlie n
YiX, . X;. = 1 wn El'(“/un)‘ .',32(“] .

where g¢pixy} 18 the magg-normalised wode shapa function for the n'th mode
at point 1, wp, and ¢, A&re the natural frequency and damping ratio of the
n'th mode respactively, and the e)“T time dependence of the foreing term @
has been suppressed, A viscous damping model has been used in preference to
the hysteretic damping modal because, although use of hysteretic damping may
allow for more accurate representation of physical material properties, ita
use introduces a non-causal impulse response ARG assumes that a sinusoidal
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disturbing force is used [7].

2.2 Single Degree of Preedom System Model

The tranofer mobility function between points 1 and 2 M, ,(jw) may be
written

Myplw) = ¥(X,,%,0)/1Q)

N
£ aonia ) 4
pey UntLd = (w/un)® + 32¢n)

whare A(“] = %(xl)%(xzj.

Por a continuous structure, N - o and 3o in practice the function
M,,(jw) must ba approximated by ' ‘

le[m] = M, ;[n;] + R ) (5)

i.a., the cont.ributlon of ny mdes pl.us an error, or "residual” term. In
order to medel the structure simply, the magnitude of the reaidual term
relative to that due to the modelled modes must be assessed. AS stated
earlier, ideally one would like to only requim a model which has one mode.
The residual term R may be written '

® Juni )

R = T
m=n, +1 un:tl * (W/un)z + 2tn

(6)

Aspuming that the excitation frequency 1s wall balow the rescnant
frequency of the higher mdes (1.e., [W/uwp)® << 1) and that 2{n << )1 then

L alm
R = ju L e . (7)
n=rigkr UM
For a cantilever beam [7] one may make the approximation
wn * wol2n - 1)% .

which leads to the expreasion

@ (n) .
= ;12 L (ZnA- 1)+ (2
b n=n,+1
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Then, taking as a worst case, AS0) 5 1; n=ng...., » this yields
-]
1
R = -;'g E e ——t
W n=n 41 (2n = 1)

which 18 a series of the form

™ n, , -

1 1
E =3 - [ a1
[m (z-1F 7 o Gn-1f |

and using the result (8) that

————— =
nEI Zn - l)f nt/96
therefore may be written as
n
R [ e SU S ] .
R %ot L8 n£1 IZn - 17% (9)

Note that this may be easily evaluated, since n, 18 small.

In order to accurately model a cantilever beam as a single mode system,
then a high value of w®m, should be used so that the modal separation is high
and hence the residual term at the fundamental frequency ia low. :

If this i3 true, then the beam may be modelled as a standard second-order
gystem with mass m, damping ¢ anrd gpring stiffness k. The equation of
motion of the beam in reaponse to a force £(t)} then becomes

met) + ox(t) + kx(t) = £(t) (10)

wvhere m, ¢ and X represent modal masses, damping anpd stiffness terms
reapectively.

In order to apply active control to the system, assume that signals
corresponding to the acceleration, velocity and displacement of the beam may be
obtained, and fed back, scaled by gains Mg, Cc and Ko respectively, as shown
in Pigure 1. The equation of motion must De modified in order to account for
the feedback terms and becomes
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me +cX+kx= €+ u
where u = —(Mck + Cok + KeX) 18 the force smignal fed back into the structure,
ie., )
(M + Mo)X + (C + Colx + (K + Ka)X = £(t) (11}
Thus, modification of the natural frequency and/or damping ratic of the beam
.is now poasible by appropriate choice of gains M., Co and Ka. This will

result in a modified fundamantal frequency w,* and damping ratioc o'
given by: .

oo [ XK
" Yo ™ + M
and’ '
£o' = (c * Co)

2Y(K + Fc)(m + M)

BY alteration of the gains Re or xc then the fundamental frequency of the
atructure may be either increased (Fe > 0 or L7 ¢ 0} or decreased

(Mo > 0 Oor EKe ¢ 0). Thesa changes correspond to changes in the apparant
mass and apparent atiffnass respectively of the beam, It ia important to note
that no physical addition of stiffness or mass has taken place. 1In a similar
way, use of valocity feedback (Cg # 0) allows alteration of the modal
damping of the structure.

By inspection of the roots of equation (11) for all values of the

coefficienta, it is seen that ntah.l.‘l.n:y of the system i3 in principle assured’
provided that (m + M), (¢ +Cc)and (kK + Ko} » O,

2,3 Deaign of a PID Controller

In oxrder to feed signals corresponding to acceleration, velocity and
displacement back into a structure, the classical PID controller {9] 1s
of the form shown in :Pl.gum 2. In thias case the output ¥({t) 1a related to
the input u(t) by

¥(t) = Kp u(t) + K [ u(t)at + xp 2LED (12)
7t
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In most practical cases, the surface acceleration of a structura ig the
input signal w(t). The controller must therefore be reformulated as in
Pigure 3. It 1a now seen that accurate digital integration is required in
order to achieve the objectlve of obtaining and feeding back acceleration,
velocity and displacement signals. The following section describes the design
and implementation of the integrators required for such a task.

2.4 Design cof a Precision Digital Integrator

Two approaches to the design of a digital integrator are possible; either
design the device directly in the Aigital domain, or map {using some specified
transformation) on analogue design intc the digital domain [10].

A problem unique to digital systems 1o Ammediately encountered when
degigning such a device. Twe faatures inherent to the system cause delays,
and hence inaccuracies in the phase response (which, for perfect integration,
should have a value of -m/2 for all values of wT 1in the range
0 £ wP € 2/T, where T i3 the sample period). These are:

{1y the sample-hold devices on the output of the digital system,
which have a ({sin wT/uT) type transfer Fundtion and hence give
rige to a +sample delay [10], and

(1i) the finite processing time of the processor used to implement
the algoerithm, which will add a Efurther delay. This may be
reduced (for a given processor} by reducing the code implemented
per sample to a minimum. :
Twa desl.tjn approaches will be shown hers, both inwvolving transformation of an
analogue design into the digital z-plane.

2.4.1 Bilinear transform design [10])

The analogue mxdel used has a transfer function of the form
A(8) = a/(9 + a} where a is a constant. Making the substitution

_ ,2,2=1
8 = (U331

where T 48 the sample pericd, which corresponids to the bilinear transform,
then

_ agl + z=%)
H2) = ra s 2/T) + (a - 2700z *

{13}

Evaluation of the ffeguoncy response of this deaign by setting =z = a)<T
with T o 0.001 (1.e., a sampling frequency of 1 kAz) and a =1 yields the
responge of Figure 4. Two features are apparent:
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{1) the design givea a unit gain at d.c., and

(1i) although no account has been taken of any phase terms introduced
by the features described earlier in section 2.4, the responga tends
towards a value of -7/2. When these terms are added to the phase
response, it will not be a good approximation to an integrator.

2.4.2 Impulse invariant tranaform design [10]

The analegue integrator transfer function used is again
““Hi{e) = /8 + &
Anverae Laplace trapa!nm.tng this gﬁau
n(t) = aa-at
a0 that an .i.ﬁpulse invariant traneforimation yields
h(nT) = ap—anT
where T ia t.he‘ sample -parind.
" e response naymu be tranaformed into the z-plane, gi\iring

R i - - as

setting z = 3T and evaluating B(eIWT) ' for © € Wf < n/2 yields the
frequency response of Pigure S {(again' a ='1 and T = D,001). Framination
of Plgure 5 shows that: ’ .

(i) the magnitude response has z large value at 4.¢., anpd

(ii} the phzse rasponsa reaches a value of -n/2 very quickly
but then slopes uniformly up to 0 at WwT = 7 {(i.e., at a
-frequency of half the sample rate; 500 Hz in this example).

The phase response is of the form

[ —e~8Tain o

T e oo o (18

Arg(R(e}vT)) = ran—2

ror 9T 51, 1.a., (aT - 0). then equation (15) becomes

~gin T

Ty o T
Arg(R(edvT)y) = tan~s | —EE
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The use of the approximation (aT — 0} may be juatified since for most
practical systema, T is as small as possihle, and, aince integration 1o
required from low frequencies, a 1is also gat to a small value. Por the
example hare, aT = 0,001 and therefore the errcr in assuming that eaT =1
ig of the order of 0.1%.

Pquation (15) may be furthar rewritten as

[z 9in(wr/2 Jcos(Wl/2)

w'.l‘ -
Arg(H{e)¥T)] = tan=: 7 cosEtaTi)

a tan"1(cot wl/2)

By use of addition formulae, this may be expresséd as
arg(u(edeTy] = (v1/2) - (n/2) (18)

i.e., when the hali-sample delay due to the sample-hold circuita is included,
the phase response will be almoat exactly -n/2 for O & oT €& 7, as required.
The extra delay due to the finite spéed of the procesgor will still be
incurred, but in general this may be made of much gmaller magnitude. Rence
the implementation of equation {14) in difference equation form will give
accurate digital integration with the sample-hold delays already accounted
for. This form of integrator was used to perform the experimental work
deacribed in section 3 of this paper.

3.  EXPERIMENTAL PROCEDURE

The apparatus usad to perform the work is shown in Pigure 6. The
cantllever besm used has a fundamental frequency of approximately 90 Bz. This
ensures that the modal separation is high, apd thus in equation (9) the
residual term is approwimately 3Jw.5 x 107° which ls of much lower magnitude
than the response of the Pundamental mode at resonance which 18 of the order
of 0.2. Ik cadition, the excitation force was a bandlimited random signal
with an upper frequeficy limit of 250 Ez, in order to excite only the
fundamental mode. THe 1mpeda.nca head was mounted at a position corresponding
to & node of the second cantilever resonance. In this way the approximation
of the beam to a gecond order system was achieved.

In all the experimental work, a Temas Instruments TMS 32020 Digital Signal
Processor cperating at a sample rate of 44 XHE was used to provide digital
integration. The processor operatep at 5 MHEZ, giving an instruction cycle
time of 200 msec. T :

4. RESULTS AND DISCUSSION

Piqure 7 shows the mofulus of inertance of the beam up ta 1.6 kAz with no
active control applied, Figure 8 showa the modulus ¢f inertance with active
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control applied in the form of velocity feedback (1i.e., Co *# 0,

Mz = K = 0). Attenuation of 19.5 dB is achieved at the fundamental
frequency, with attenuation of = 6 4B at the second mode. The reduced
attenuatlion 18 due to tha decrease of damping ratio with frequency, which
requires that higher gains be used at higher frequencies. By contrast, thes
gain 1in the feedback path decreases mmtoniculy with frequency due to the
oontr.‘l.but.l.on of the integrator. .

Pigure 9 ahnws the result of performing displacement and velocity feedback
{i.e., in this case integral and dnuble—:.ntegral control, 80 that Mg = 0, Ca
and ‘c ® 0}, The rescnant frequency has been shifted from 90 Hz to 137 Hz,
ard the added damping has reduced the amplituds of the moda by some 6 dB.

This shift (n natural frequency corresponds to an increase in stiffhess by a
factor 2. 3. Figure 10 shows an example of proportional and integral control,
correapommg to acceleration-plua—velocity feedback. The fundamental has
been shifted in £requency from 90 HZ to 61.5 Hz and its amplitude increased
‘(which oomsponds ta Cg ¢ o) by a.l.moat 5 d'B

The results show clearly that by selection of the correct combinations of
gaina, tha PID—type controller may be used to adjust the modal parameters of
the gimple syatem used. The primary advantage of the digital controller over
its analogue counterpart is the ease with which the control paramaters may be
altered, and the pracision with which thay may be selected.

The integrator performs well, with a phase response which is accurate to
within leas than 1° above about 3 Hz. The delays due to the finite processor
time are small; each instruction cycle takes 200 nsec to perform, so that the
entire algorithm is executed within 8 usec. The processor, even while
operating at a gample rate of 44 kHz (cycle time of 24 psec) is idle for = 70%
of the time. The actual d.e.'l.ay that this represents when operating at such low
freqmnc.tea {relative to the sample rate) is thevefora low. Thia feature is
8till of importance, rnueve:. in two meas

(1) when the frequency range of !.ntemet 18 higher, and the coda to be
implemented is more complex, and’

(1i) when the code is of variable length (due to branches/junps in
execution)., This will cause "jitter” on the output unless
precautions are taken to latch the output in sume way,

- 5. CONCLUSIONS

The alteration of modal parameters using a digital controller ia
i1llustrated. The dasign of the controllar is based arcund the deaign of a
very accurate digital integrator. Thisa design is examined in detail,
together with a discussion of features such as internal delays which pose many
of the problema involved with the practical :l.nplmantat.ton of such control
algorithma,
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Figure 1 : Repmsentanon of system with feedback terms
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Figure' 3 : Practical Implementation of a PID Controller.
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" Figure 6 : Experimental apparatus
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Figure 7 : Cantilever Beam Inertance - No Active Control.
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Figure 8 : Cantilever Beam Inertance - Active Control Applied.

10

Magnitude (kg" )

0.01

Figure 9

260

=
0 400

no control

control on

Frequency ( Hz)

: Integral plus Double Integral Control
(i.e. velocity plus displacement feedback ).
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Figure 10 : Proportional Pplus Integral Control
. (i.e. acceleration plus velocity feedback ).
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