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This paper presents a methodology to compute acoustic damping rates of transversal modes due to vortex-
shedding. This acoustic damping rate presents one key quantity for the assessment of linear thermoacoustic
stability of gas turbine combustors in the high-frequency regime. State-of-the-art network models — as em-
ployed to calculate damping rates in low-frequency, longitudinal systems — cannot fulfill this task due to the
acoustic non-compactness encountered in the high-frequency regime. Furthermore, direct eigensolutions
of the Linearized Euler Equations (LEE) yield incorrect results for the damping rates due to the implicit
presence of acoustic as well as hydrodynamics contributions in these solutions. The proposed method-
ology consist of three steps: (1) The regions in which acoustic fluctuations are transformed into vortical
disturbances are identified from LEE simulation results. (2) The respective regions are modeled as acous-
tic momentum sinks, which are suitably included in the Helmholtz Equation (HE). (3) The unknown loss
coefficients are obtained by requiring equality between reflection coefficients (which is a purely acoustic
quantity) of the concerned configuration obtained from LEE and HE plus sink model. The desired acoustic
damping rates are then computed by solving the respective HE for the transversal eigenmodes of interest.
The methodology’s applicability to technically relevant systems is demonstrated by a validation test case
using a lab-scale, swirl-stabilized combustion system.

Introduction

Thermoacoustic instabilities are detrimental to lean-premixed combustion systems. Their avoidance presents a
predominant challenge for design and operation of modern gas turbines for power generation. These instabili-
ties are understood as the consequence of Rayleigh’s criterion, which states that acoustic energy is generated at
a particular eigenmode of the combustor when oscillations of the flame’s heat release rate and fluid pressure are
in-phase. Such oscillations of heat release are caused by naturally present acoustic (eigen-)oscillations, which
penetrate/disturb the combustion process. Thus, a mutual amplification of heat release and acoustic oscillations
takes place, and establishes a constructive feedback between the former and the latter. If the acoustic dissipa-
tion is lower than the generated energy, the acoustic oscillations receive a net supply of energy. This energy
supply initiates a growth in oscillation amplitude until saturated by non-linear mechanisms associated with
the flame dynamics. Once the dissipated energy equates the supplied energy, a constant amplitude limit cycle
state establishes at a particular eigenmode/-frequency. Hence, one decisive factor whether an instability occurs
is the strength of acoustic dissipation at the concerned eigenmodes of the system, which presents the central
subject of this work. One physical mechanism that leads to acoustic dissipation is the interaction between the
acoustic oscillations and shear-layers of the flow, as e.g. found in free or swirling jet streams. This process
induces periodic formations of coherent flow vortices that can be interpreted as a sink of acoustic energy, i.e.
acoustic damping. Such periodic vortex formations are shown in Fig. |1|a) via Mie-Scattering images [1]] that
are triggered by the first transversal mode in the outer shear layer of a swirling velocity field in an experimental
combustor. Notice that this combustor experiment (cf. [1] and [2] for details) serves as the validation test case
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in this work. Associated, numerically obtained fields of axial mean velocity and instantaneous velocity distur-
bances from numerical simulations are illustrated in Figs. [T]b)-c). The corresponding dissipation of acoustic
power is visualized through Howe’s equation (cf. [3] and details below) in Fig. [I]d). Other damping mech-
anisms (not considered in this work) are the formation of entropy disturbances due to interactions between
acoustics and mean flow temperature gradients and dissipation in the acoustic boundary layer [4].

Figure 1: a) Mie scattering of period vortex-shedding [1]], b) Normalized mean velocity field, ¢c) Normalized
instantaneous velocity disturbance field, d) Normalized acoustic power dissipation

One approach for mitigating the occurrence of thermoacoustic oscillations is to pursue a design-for-stability
strategy, which implies the computational assessment of the linear stability for new combustor designs, for
modifications of existing combustors via retrofits or implementation of stability enhancement devices. For this
purpose, low-order linear stability tools have been readily developed and applied. These tools are typically
based on a modal approach, which implies that the thermoacoustic oscillations are governed by a complex
Fourier series, i.e.

N

¢/(Xa t) = Real <Z é(xa Wn) eXp(iwnt)> . (1
n=0

In Eqn. [1} ¢ represents the spatially dependent (x) acoustic variable (i.e. pressure p, vectorial velocity u and

density p). The prime ( /) denotes oscillations in time (¢), while the system’s eigenmodes — which constitute

the summation expansions — are complex amplitude distributions, which are indicated by the hat (). Having

included all energy addition and removal processes (i.e. flame driving and acoustic dissipation) in the stability
tools, yields the complex eigenfrequency, i.e.

Wn = 27Tfn - Z‘Oén,a (2)

where f,, is the oscillation frequency, o, , is the acoustic growth rate, and the subscript a indicates a strict
correspondence to acoustic quantities. The value of the growth rate essentially defines the linear stability state
of mode n, and thus of the thermoacoustic system:

Qpn,q >0 — unstable 3)
Qpq <0 — stable 4

Interpretatively, the growth rates describe the normalized change of oscillation energy, which gives by definition

1 dE,,
Qg X ——

Bna dt

= const. (5)

where E, , can be interpreted as the period-averaged net energy amount due to acoustic driving and damping
mechanisms. An important physical/mathematical feature of acoustic oscillations associated with Eqn. [3]is
the potential flow nature of the associated fluid motions, i.e. the irrotationality of the acoustic velocity field
V x 1 = 0. The growth rate can be decomposed into

Qn = Qp q, flame + Qn,a, flow (6)

where o, o, flame > 0 and oy, 4 f10w, < 0 are the acoustic driving rate and damping rate caused by interactions
with the flame and flow’s shear layer at mode n, respectively. Notice that in theory, the opposite situation can
prevail too, i.e. damping by the flame and driving by the shear layer [3], which is disregarded in this paper for
clarity reasons.

Referring to Eqns. [3}f4] and [6] if driving exceeds damping, an instability impends, and vice versa. Thus, the
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task of stability assessment comes down to correctly including all energetic contribution in the respective com-
putational model of the concerned combustion system. Low-frequency (i.e. below the concerned chambers cut
on frequency) oscillations are constituted by longitudinal, one-dimensional mode shapes. Flame driving and
acoustic damping occur in an acoustically compact/zero-dimensional manner, which implies that the associated
wave-lengths are larger than the respective interaction zones (e.g. combustion and shear layer regions). In terms
of modeling, these interactions are included by zero-dimensional transfer functions (analytically, numerically,
or experimentally obtained) in well established network modeling approaches ([6]).

For high-frequency instabilities — which have become an increasingly relevant challenge in industrial gas tur-
bine combustors [7] — the compactness assumption no longer prevails, and thus, restricts the application of
network models. This is due to the governance of the oscillations by multi-dimensional mode shapes at fre-
quencies above the chamber’s cut on value. Associated wave lengths are small, which leads to a spatial vari-
ability of flame driving and acoustic dissipation mechanisms across the corresponding combustion and shear
layer regions. Hence, high-frequency instabilities are synonymously referred to as non-compact thermoacoustic
oscillations. In order to model a non-compact system’s thermoacoustic stability, spatially varying/non-compact
transfer functions are required. For the driving part, details on analytical modeling and experimental obtainment
of non-compact transfer functions are readily provided in previous work of the authors in [8]. An analogous
treatment of acoustic damping have seemingly not yet been pursued, but is crucially needed for a complete
linear stability assessment of non-compact systems. In this work, a methodology is proposed with which the
acoustic damping of transversal modes due to shear-layer interactions can be modeled and quantified by a local
transfer function.

The paper is structured as follows: The first section provides relevant theoretical background and states the
research objectives. The second section presents the modeling methodology along with the analysis procedure.
Then, a respective verification and validation test case is carried out in section three. The test case results are
shown and discussed in the forth section before the paper is concluded.

1. Theoretical Background and Problem Statement

This section establishes governing equations, presents the research objectives, and proposed the associated
modeling methodology to achieve those objectives.

1.1 Governing Equations

Unsteady/oscillatory flow problems that are characterized by small disturbances from a spatially non-uniform
steady state are governed by the Linearized Euler Equations (LEE) in frequency domain:

pliwh+u-Va+ua-Vu)+pu-Va+Vp = Fyg, @)
iwp+u-Vp+a-Vp+pV-u+pV-u = F;. 8)

>)1j>

In these equations, the steady mean flow (bar symbol (7)) includes velocity, pressure as well as density. This
mean flow field is obtained e.g. by numerical simulations. The solution variables (hat symbol (")) are the com-
plex amplitude distributions/mode shapes of the disturbed flow variables at an associated angular frequency w.
Note that the disturbances of density and pressure are related through the speed of sound by p(x)é(x)? = p(x)
in Eqns. [/H8l which implies the assumption that the flow disturbances behave isentropically. The mode shapes
may either correspond to (complex) eigenfrequencies of the system or to (real) prescribed values as a response
to external excitation. The right hand sides of Eqns. [748| host respective volumetric terms F and Fg. Main-
taining a three dimensional dependency of the solution variables and source terms automatlcally accounts for
any thermoacoustical non-compactness associated with transversal acoustic modes. The LEE mathematically
capture all linear interactions between shear layer and flow disturbance, i.e. the acoustic triggering of periodic
vortex-shedding. This process represents a transformation of acoustic (sink) into vortical disturbances (source)
at the location of the interactions. Consequently, solutions of Eqns. contain acoustic as well as vortical
disturbances that respectively propagate with the speed of sound and the mean flow velocity in a superposed
manner (cf. further details in the next subsection).

Numerical solutions (eigenmodes/-frequencies or forced modes at predefined frequencies) can be obtained us-
ing a stabilized Finite Element Method (sFEM). The stabilization is required in order to avoid spurious solutions
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caused by the convective terms of the LEE [9]]. The residual based Streamline Upwind Petrov Galerkin (SUPG)
artificial diffusion scheme is employed for this work, which yields to following discrete form of Eqns. [7HS]

inng) = (AJrTASUpG)(;ASJrB )

In this expression, E, A and A gy pg denote discretization matrices associated with the time derivatives (i.e.
iw terms), spatial derivatives and SUPG stabilization operators, respectively. The solution vector gZ; = (p a)7
hosts the solution variable at every node in the mesh, while the source term vector B remains unspecified at this
point. The constant parameter 7 allows to the control numerical stabilization strength and is specified by the
user. Note that all necessary boundary conditions to compute a problem-specific solutions (cf. details further
below) are assumed as already included in Eqn. 9]

At this point, the question arises how to obtain the desired acoustic damping rate «, , at the mode of interest
due to vortex shedding. It is intuitive to presume that simply solving Eqn. [9] for the complex eigenfrequency
would yield this damping rate. Unfortunately, as is explained in the following, this would yield incorrect results
and compromise the reliability/correctness of the entire stability assessment.

1.2 Research Objectives

The reason why direct eigensolutions of the LEE cannot be used for the quantification of pure acoustic damping
is of physical origin. As mentioned before, the vortex-shedding processes governed by Eqns. include
acoustic and vortical disturbances that compose the unsteady fluid velocity, i.e.

a =1, + uy,, (10)
where the former and latter vector fields are irrotational (V x 1, = 0) and solenoidal (V -1, = 0), respectively.

The normalized change of periodically averaged energy (as in Eqn. [5) associated with an LEE eigenmode can
be explicitly formulated (cf. [5]), and is given by

o . - 2
1 dE, ‘jvpu- (Q x @) + pi - (2 xudV’

Qy ¢ — x - — (11)
By dt |y 92/p+ p(& - &) + 2pu - GdV|?

where «,, represents the imaginary part, i.e. damping rate, of the eigenfrequency in Eqn. @, Q =V x,and
) = V x 11 are mean and disturbed flow vorticity, respectively. From Eqns. |1 m and. 1|it follows that
1 dE, 1 dE,p, 1 dEy,

By dt  Ean dt | Bon di T Ome T e (12)

Equation [T2]reveals that damping rates obtained from LEE eigensolutions indeed contain pure acoustic contri-
butions, but also vortical contributions. For this work, the former quantitatively describes the loss of acoustic
oscillation energy due to vortex shedding, while the latter contains all energy conversion processes associated
with the vortical disturbances [3]. However, it is crucial to point out that the assessment of thermoacoustic sta-
bility in accordance with Eqns. [3}{4and [6|requires the pure acoustic damping rate o, ,, which is associated with
the irrotational disturbance field {i,. Hence, any direct use of LEE damping rates for thermoacoustic stability
assessment is physically and theoretically prohibited. A separation of the potential and vortical components of
Eqn. [10|— and thus of Eqn. |1 1|- is not straight-forwardly possible. Hence, a methodology is needed that allows
to quantify the pure acoustic damping in a reliable and robust manner, and is applicable to transversal modes
in non-compact thermoacoustic systems. The development, verification and validation of such a methodology
defines the central objective of this paper, and is presented in the following sections.

1.3 Modeling Methodology

The methodology proposed to model and quantify vortical damping of transversal modes is based on the
Helmholtz equation, which is given in conservation form by

(13)
(14)

iwﬁa + ’Yﬁv : ﬁa

I, O
=
Q

piwily + Vp, =
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These equations yield irrotational velocity disturbance fields driven by pressure disturbance as the potential,
and are thus purely acoustic quantities. Furthermore, this irrotationality implies that any damping rate com-
puted by solving Eqns. describes pure acoustics, too, which is precisely the desired quantity required
for thermoacoustic stability assessments. The acoustic dissipation due to vortex shedding is modeled as a
sink of momentum, while discarding the capturing of any hydrodynamic effects. Mathematically, this sink of
momentum is modeled by linearly expanding the volumetric source term in Eqn. [14]to the first order, i.e.

Fa, =D -, - 6(x —xp). (15)

The matrix D is assumed to unfold into a 3x3 diagonal matrix with entries D(1,1) = (,, D(2,2) = (., and
D(3,3) = (p. These quantities can be interpreted as acoustic loss coefficients in an analogous manner as the
Crr coefficient occurring in vortical damping models [3]] for low-frequency instabilities. The Dirac function
in Eqn. indicates that the damping term is only defined in the region (spatially described by xp where
dissipation physically occurs in the chamber (i.e. at the edge of the burner outlet, cf. Fig. [Id)), across which
the loss strength can be assumed constant. This dissipation region can be qualitatively identified (cf. Fig. [Id)
using Howe’s equation for acoustic power absorption (period averaged) in free shear layers, i.e.

~

Pa(x)m’[ﬁxﬁ+flxﬁ]-ﬁa

(16)

where 1 is the total velocity disturbance field of Eqn. and 10, is the irrotational component, respectively.
The evaluation of Howe’s power dissipation field requires vorticity and velocity disturbance fields, which can
be directly retrieved from LEE solutions at the frequencies of interest. The irrotational velocity field can
be approximated using pressure disturbance of the LEE solution and the homogenous acoustic momentum
equation in Eqn. via uy = (iVp)/(pw). Assuming that dissipation of acoustics due vortex-shedding
physically occurs along the streamline of the mean flow allows to functionally connect the three coefficients in
Eqn. [T5] and reduce the number of unknown loss coefficients from three to one. The loss matrix becomes

D=(-G-é(x—xp), a7

where the entries of the 3 x 3 diagonal matrix are given by G(1,1) = g, 51, G(2,2) = g, 51, G(3,3) = 90,51,
and represent geometrical functions that are straight-forwardly retrieved from the streamlines of the mean flow
field at the identified sink region xp. Discretization of Eqns. [I3|-[I4]is carried out using a standard FEM
scheme [8], while replacing the momentum source by the damping model of Eqns. [I5] and yields the
algebraic system

iwEqhq = (Aq + CAD) b, (18)

where the subscript a indicates the solutions’ pure acoustic/irrotational nature. Matrix A p is the discrete result
of the damping model given by Eqns. [[5|and[I7} The remaining task before the damping rate can be computed
is the determination of the loss coefficient (. This is achieved by imposing an equality requirement between
the reflection coefficient of the concerned configuration obtained from respective simulations of the full LEE
(which includes the physics) and the HE (which includes the damping model). Specifically, the reflection
coefficient defined as the ratio of leaving and entering traveling acoustic waves of concerned volume, denoted

with reference to Fig. below as R(w) =

E
&

. . Acoustic
Acoustic Domain waves

Figure 2: Characterization of an acoustic domain via a reflection coefficient

Using the Multi-Microphine-Method (MMM) to retrieve this reflection coefficient filters out any vortical distur-
bances present in the LEE solutions, and represents a unambiguous quantification of the pure acoustic damping
due to the vortex shedding. Specifically, the MMM extracts the complex amplitudes of the traveling wave
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components from the LEE pressure fields, which are then used to determine the desired reflection coefficients.
Note that the MMM to obtain reflection coefficients of a system that includes transversal modes requires to
account for the transversal variability of the traveling waves. Details on this procedure is omitted here due to
space constraints, and can be retrieved from [10]. Thus, the value for ¢ — which may be frequency dependent —
that equates reflection coefficients of the LEE and HE system yields a quantitatively correct model of the pure
acoustic damping due to vortex-shedding. Summarizingly, the determination of the loss coefficients occurs
through the following steps:

1. Visualization of vortical dissipation region P, and identification of the sink location x

2. Computation of the reflection coefficients R over the frequency range of interest from LEE solutions

3. Determination of ¢ values such that the reflection coefficient from 2. is reproduced by the HE model
Once the values of ¢ are known across the concerned frequency band, Eqn. can be solved for the eigen-
modes of interest, which yields desired acoustics damping rate physically relevant for thermoacoustic stability
assessments.

2. Test Case

This section presents the experimental combustor configuration used to validate the the above-proposed method-
ology. An atmospheric, isothermal operation point (air mass flow rate of . = 120g/s at T = 293K) of a
premixed combustion test rig hosting a swirling mean flow field comprises the specific test case configuration.
A schematic of the experimental setup in shown in Fig. [3] where the analysis domain is restricted to the cham-
ber only. Note that detailed explanations of this setup along with experimental investigations and analyses of
high-frequency thermoacoustic oscillations can be found in e.g. [1] and [2].

Computational M
Domain Exhaust
\__33 ‘

Premlxed Swirling Flow

Burner Flame

A’EV Swirler Combustion Chamber

Figure 3: Schematic of experimental gas turbine combustion system

The swirling mean flow field, shown in Fig. [Ib), can be viewed as representative of the flow conditions occur-
ring in industrial (e.g. can type) gas turbine combustors. Furthermore, note the following remarks regarding
the transferability of the isothermal test case to "real" combustor conditions with reactive flows: The region in
which vortical damping occurs exhibits a relatively short axial extent as is shown by visualization of Howe’s
power dissipation term in Fig. [Id). This axial compactness justifies the non-consideration of a mean tempera-
ture distribution. In case a temperature distribution would be present, the vortical damping region x p remains
fully immersed within the isothermal part of the flow field, and would thus not "feel" any temperature gradient.
Consequently, the loss coefficient ¢ of a given flow field can be assumed as equal between isothermal cases and
reactive counterparts.

Furthermore, the absence of combustion implies the absence of any thermoacoustic processes, leaving acoustic
dissipation as the only mechanism determining the damping rate value. Thereby, optimal test case conditions
are achieved, which is further ensured by nozzle-termination of the chamber: This enforces an axial increase
of cut-on frequency value, which causes an attenuation of the first transversal mode towards a zero value at the
outlet, and is thus, unaffected by any potential dissipation at the system outlet. Similarly, the smaller diameter
of the burner tube creates independency of the inlet boundary condition at the first transversal chamber mode.
Note that this axial attenuation equally occurs in systems with combustion, where the axial increase of the cut
on frequency is caused by an increasing temperature/speed of sound [8]]. Hence, the present isothermal nozzle
configuration yields comparable first transversal mode shapes as occurring in reactive/thermoacoustic cases.
In the following, vortical damping of transversal modes within the test case configuration is modeled and quan-
tified with the proposed methodology. Corresponding experimental benchmarks, i.e. oscillation frequencies
and damping rates for two first transversal modes are available from previous work of the authors in [[11].
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3. Results

The first step of the proposed methodology requires the visualization of the dissipation region according to
Howe’s power dissipation relation. The respective normalized regions are shown for the first two transversal
modes (T1 and TIL1) in Fig. @) and b), along with the local zones for the sink model. The size of this
zone can be assumed invariant with frequency. The corresponding pressure mode shapes are shown in Fig.
Mh) and b). The dotted perturbations after the burner edge clearly reveal the impact of hydrodynamic velocity
perturbations. The FEM mesh along with the boundary condition required to compute the respective LEE (as
well as subsequent HE) eigensolutions is shown indf).

OUTLET: =0
WALLS: G-n =0

Figure 4: Normalized LEE pressure mode (top) and vorticity source/acoustic sink region(bottom) for T1 mode
an b) T1L1 mode, ¢) FEM mesh and boundary conditions

Next, the reflection coefficient is computed. Note that this coefficient is not obtained from the LEE eigenso-
lutions of the given configuration in Fig. Rather, the Riemann invariants are extracted from (forced) field
solutions (without the nozzle) of the LEE in Eqn. [9] for a prescribed set of real frequencies as a response to
an external excitation. The selected frequency band is f = (1200 : 35 : 1795) H z, which includes the eigen-
frequencies of the T1 and T1L1 modes in the test case combustor. The stabilization parameter (cf. Eqn. [J) is
set to 7 = 1, which emerged as the minimum value that yields non-spurious solutions. Specific information
regarding the obtainment procedure of the reflection coefficient is omitted due to space constraints, and one is
referred to the literature [10]. The magnitude of the resulting reflection coefficient is displayed in Fig. [5p) and
reveals a nearly constant behaviour across the concerned frequency range. The loss-coefficient ¢, which yields
the reproduction of the LEE reflection coefficient through the HE model is shown in Fig. [5p).

a) 1 T T T T T T T T T b)“

0.99 T1L1 Eigenfrequency T1L1 Eigenfrequency

1F »
0.98 1
0.97 l—\‘~..‘,.—-‘k e a— < 09k }Eigenfrequency |

. =
094 F T1 Eigenfrequency i
/ 07
0.93 1

. . . . . . . . . 05 . . . . . . . . .
1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
Frequency (Hz) Frequency (Hz)

Figure 5: a) Reflection coefficient of LEE benchmark b) Matched loss coefficient

Finally, the complex eigenvalues of Eqn. are computed for the T1 and T1L1 mode of the nozzle domain
under consideration of the ¢ distribution in Fig. [5p). The resulting damping rate values describe the pure acous-
tic damping due to vortex-shedding as desired, and are provided in Tab. [I] The table contains the measured
counterparts of the damping rate and oscillations frequency, and reveals an accurate reproduction of the mea-
surement benchmarks by the model. Furthermore, the imaginary part of eigenfrequency obtained by directly
solving the LEE for its eigensolutions of the given combustor configuration — including acoustic and hydrody-
namic contributions — are listed too, which reveals a significant deviation against the computed/measured pure
acoustic counterparts, and clearly should not/cannot be used for any thermoacoustic stability assessment.

Conclusions

This paper presented a methodology to quantify the acoustic damping of transversal modes due to vortex-
shedding in thermoacoustically non-compact gas turbine combustors. Specifically, can-type combustors con-
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agxp(rad/s) | agg(rad/s) | arepe(rad/s) || fexp(Hz) | fue(Hz) | frep(Hz)
T1 —15+2 —16 —1.1 1312 1337 1336
TIL1 —25+3 —24 —1.5 1620 1647 1650

Table 1: Measured and calculated growth rates and oscillation frequencies [11]]

taining a swirling flow field were considered as the technical target application. The computed damping rates
present a substantial ingredient for the numerical assessment of a combustors’s thermoacoustic stability be-
haviour. The computation of a direct eigensolution of the Linearized Euler Equations (with an underlying mean
flow that contains strong shear layers) to retrieve the acoustic damping rates is impossible as the LEE describe
acoustic as well as also hydrodynamic disturbance contributions. Instead, one has to perform computations
that exclusively solve for acoustic disturbances. This is achieved by the presented methodology as it based
on the Helmholtz Equation including a sink function of acoustic momentum to model the vortical damping
effect on the acoustics. This sink is locally defined in accordance with the zone of dissipation that is given
by Howe’s analytical dissipation equation. Assuming that dissipation occurs along the streamline defines this
sink as a function of the local acoustic velocity and a loss coefficient. This loss coefficient is determined by
an imposed equality requirement based on transversal acoustic reflection coefficients, which can be effectively
retrieved from forced solutions of the Linearized Euler Equations. The desired acoustic damping rates are then
computed by solving for the Helmholtz Equation including the sink term with loss-coefficients for the acoustic
modes of interest. An isothermal and atmospheric validation was carried out using a test case of a swirl-
stabilized combustor configuration, which yielded a simplified, but transferable flow conditions as occurring in
technically relevant industrial gas turbine combustors. The first two transversal modes (T1 and T1L1) served
as target to determine respective damping rates for comparison against readily available counterparts from ex-
perimental measurements. The experimental benchmarks were successfully reproduced, which validated the
proposed methodology, and granted it eligible to be used for computing acoustic damping rates relevant for the
numerical assessment of non-compact, high-frequency thermoacoustic instabilities.
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