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Abstract

Four nonparametric statistical classification
methods are evaluated ‘for the problem of
segmentation and} classification of the seabed
based upon data recorded from a multibeam

echo sounder., Two of the methods are the

multilayered perception (MLP) and radial ba-
sis function (RBF) neural networks. The other
two methods are'polynomial regression mod—
els (PRM) and a B—spline modelling technique
(ASMOD). The classification is based upon a
set of features extracted from the strength of
the echo recorded within a rectangular region
(pixel) of the seabed. Feature extraction is_not
covered in this article, but we refer to another

article on this subject in these proceedings.

Test results for two different geographical

regions are presented, and the performance of

the different classifiers is discussed.

1 Introduction

This work is part of a. project that started

in December 1990 with the aim of developing}
methods and algorithms for seabed classifica-
tion based on sonar images of the seabed. Par-

ticipating companies are Simrad Slubsea A/S,
Norwegian Computing Center (NR), and SIN-
TEF SI (former Center for Industrial Research
(51)). The sonar images are all recorded with
the Simrad EM 1000 multibeam echo sounder
at 95 kHz. The extraction of features from

the images used for the classification has been
done by NR and is described elsewhere in these
proceedings [Milvang et (11., 1993].
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One of the main application areas for
artificial neural networks (ANN) is pat-
tern recognition and statistical classifica-
tion, and ANN have been used for clas-

sification of sonar signals [Lippmann, 1987,
Gorman and Sejnowski, 1988]. In the work

described here two of the most common ANN
paradigms are tested, namely the multilayered

perceptron and the radial basis function neu—

ral networks. Two other nonparametric tech-
niques are also evaluated. These are a B-spline

based method named ASMOD and polynomi—
al regression models. _

All these methods are nonparametric in the

sense that they do not assume any particular

distributions of the data as e.g. normal dis-
tributions, but rather try to identify a general

nonlinear function for the relative probabili-
ties of the difl'erent classes. These models thus
are more general in the sense that less assump-
tions are made on the statistical properties of

the data. But this is gained at the cost of
more complex modelstructures with a greater
number of parameters. Hence, the danger of

overfitting and loss of generalization when the
classifiers are applied to new data may be in-
creased. A thorough evaluation of the classi-
fiers on new and independent data is thus of

special importance for such models

This article is organized as follows: Section
2 gives an overview of the data material used

in this study. In section 3 a brief introduction

to the different modelling paradigms is given,
and the classification results obtained with the
different methods are presented and discussed
in section 4.

2 Descriptionof the data

The data used in this project are logged from
a Simrad EM 1000 sonar. Three series of data
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were available.

The first set was logged in October 1991 at
different locations in the Oslo fjord. Because
the October 1991 data set seems to cover more
classes than the other data sets, the training
data was taken from this set.

Two of the locations covered are assumed
to be homogeneous regions of rock and mud
respectively. A third and larger region is as-
sumed to contain different mixtures of clay,
silt and sand. Based on manual inspection of
the sonar plots three homogeneous regions are
identified from this third region which seems
to represent thi'ee different seabed types.
Data from the resulting five homogeneous

regions were usedto define five classes: Seabed
fypc 1 to Seabed type 5. The classes may corre-
spond to rock, sand, mixture of sand and clay,
clay and mud respectively, but we stress that
this is not confirmed. The training data con-
sisted of approximately 200 pixels from each
class. ,

The second data set was logged in March
1992, and covers a cruise from Horten, around
Haste and up to Malen in the Oslo fjord. This
cruise was supplied with ground examination
at 10 locations along the route. The seabed
consists mainly of a mixture of clay, silt and
sand, but there are also some areas of mud and
some spots of hard bottom. I
The third data set is logged in an area lo-

cated around Nidingen outside thewest coast
of Sweden. The area covers different seabed
types and will in the near future be supplied
with ground examination. This area is expect-
ed to contain all seabed types. I

2.1 Feature extraction

A ping from the sonar is divided into 60 beams
numbered from 1 to 60, where beam 1 and 60
are the leftmost and rightmost beams respec-
tively. Each ping is divided into four sections
consisting of beam numbers 2 — 4, 5 - 24, 37 -
56, and 57-59 respectively. The different sec-
tions of ‘20 consecutive pings are put together
to form four rectangular pixels on the seabed
[Milvang et «11., 1993].

For each pixel a number of features are com-
puted based on the variations of the backscat—
ter strength within the pixel. All the clas-
sifiers described here, except the ASMOD,
use nine of the available features. These

can in general terms be described as three'

distribution parameters: mean value, stan-
dard deviation, and 3111 under moment, t-
wo quantiles: quantile 0.5 and quantile 0.3,
three features extracted from the power spec-
tra: Pach(5) D11, Pach(5) Dig, PaceM(5)
DIS, and a gray level co-occurrence con-

trast measure (GLCM contrast). For the AS-
MOD method three features were used, name-

ly vquantile 0_.8,_PaceM(5) DJ; and GLCM
contrast. The features are described in more
detail in [Milvang et al., 1993].

3 Description of methods ‘

The tested methods all aim at identifying a

model which maps the feature vector x 6 RN‘
into a probability vector y E mNi, where N.-

and N,- are integers representing the number
of features and number of classes respectively.
The models are trained by minimizing the

sum of squared errors for the N. patterns in

a training set of known classes. I.e. the cost
function '

N. "1’

E = 220M — tint)2
n=lj=1

(1)

is minimized, where tn is the the target vector

for pattern 0 containing one in element j if the
true class foripattern n is j, and zeros in all

other elements.
It can be shown that when the cost func—

tion (1) is minimized, then the elements of
the output vector yn for a given feature vec-
tor xfl represent an estimate for the rela—

tive probabilities for the feature vector to

be measured from the corresponding class-
es [Richard and Lippmann, 1991]. The class
with the largest corresponding element in yfl
is thus the class of highest probability. The
relative sizes of the elements may be used to

indicate the confidence in the classification.
The most common artificial neural network—

s used for classification, and all networks used
in this article have a multilayered feedforward
architecture as shown in figure 1. The nodes
(processing elements) are arranged in layers
with an input layer, a hidden layer and an out-
put layer. The input layer does no processing
of the data, but is used to distribute the in-
put variables to all nodes of the hidden layer.
The nodes of the hidden layer generally repre-
sent nonlinear functions, <I>,(x), mapping the
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Figure 1: Structure of a multilayered neural
network.

input vector into a vector of hidden variables
2 E ERNK The dimensionality N; of the hidden
vector corresponds to the number of hidden n-
odes, and may be smaller or larger than the
number of input or output nodes. The output
layer generally computes the output vector y
as a nonlinear function of a weighted sum of
the hidden variables.

The neural networks are trained by steep-
est descent methods, iteratively adjusting the
model parameter vector 0 in the direction giv-
ing the largest reduction of the cost function
(1) for each new training pattern (thn). A
momentum term is added to the steepest de-
scent direction to avoid large fluctuations in
the search path, resulting in a parameter up-
date rule of the form

A0" = —EVaE(Xn,tn) + 11M“. (2)

VgE(x,.,tn) is the gradient vector for the
cost function (1) with respect to the parame—
ter vector 9, and AH" and A9"_1 are the in-
cremental parameter update vectors for this
and the previous training patterns respective—
ly. s and 11 are gain constants for the gradient
and momentum terms respectively. The con-
vergence may, for many paradigms. be quite 5-
low. The training may also for some paradigm-
s be trapped in local minima, so that repeated
training may be required to find a global min-
imum.
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3.1 Multi Layered Perceptron
Neural Network (MLP)

One of the most commonly used neu-
ral networks is the multilayered percep«
tron networks (MLP) [Hecht-Nielsen, 1990,
Beale and Jackson, 1990]. With one hidden
layer the MLP has an architecture as shown
in figure 1. The nodes of the hidden and out-
put layers have all identical transfer functions
given by

11’ = 9(Zwk6k +we)
I:

where wt are adjustable weighing coefficients
for the input variables Er received from the
input or hidden nodes, we is a bias term, and
ll) is the output of the node transmitted to the
output nodes or the output vector y.

g(-) is a sigmoid function defined as g(z) =
(l — KIT)”, where T specifies the steepness
of the function.

The number of nodes in the input and out-
put layers are determined by the dimension
of the input and output vectors, whereas the
number of hidden nodes must be manually
chosen based on experience and by experi-
menting. Too few nodes gives too little flex—
ibility in the model, while too many causes
problems with overfitting. Practical experi-
ence has shown that problems of the type de-
scribed her typically requires from 3 to 10 hid-
den nodes. The results reported here were ob—
tained with a network of nine input nodes, 15
hidden nodes and 5 output nodes. The train-
ing gains were set to c = 0.3 and n = 0.4. '
The training was run 2000 times through the
training set of 996 training patterns. Training
of one model took approximately 20 minutes
on a large DEC 5000 workstation. We used the
public domain program package ’Aspirin‘ ’ for
the tests. All nine features listed in section 2
was used in the input vector.

3.2 Radial Basis Function Net-
works (RBF)

Radial Basis Function Networks (RBF) have
been proposed by a number of researcher-
s for multivariate statistical classification

1©1992 by Russel Leighton and the MITRE
Corporation.
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[Moody and Darken, 1988]. ' The REF net-‘
works use radial transfer functions in the hid- . .
den layer. Different radial functions can be
used. In the work described here Gaussian

functions with variable and independent stan-

dard deviations of for each input. dimension 1'

and function q are used:

(3)

The center positions pg and standard devi-

ations a, of each radial basis function as well

as the weights of the output layer 10,, are al-

I trained with the gradient descent algorithm
(2). For the output nodes a linear transfer
function was used, with clipping of the output

to the range [0,1]. .A detailed description of
the parameter update rules can be found in
[Carlin, 1991].
The Hierarchical Self-Organized Learn-

ing learning scheme (HSOL) proposed by

[Lee and Kil, 1991] was used. This algorith-
m does incremental recruitement of new hid-
den nodes (RBFs) until a satisfactory result is
reached, or some stop criterion is met. The

stop criterion can typically be that the gener-

alization on an independent test data set starts
to degrade.The HSOL algorithm was slightly

modified to yield better initialization of new

hidden nodes[Carlin, 1991].
An important feature of this scheme is that

it starts learning global features of the map—
ping based on a small initial number of hid—

den nodes, and proceeds with learning more

detailed information by increasing the num-

ber of nodes. The final solution will typically

use several RBFs for modelling the probabil—
ity functions of each class, allowing arbitrary
and not necessarily normal distributions to be

modelled. '

The main drawback of this learning scheme
is that the performance of the classifier. may
depend on the choice of several parameters val-‘

ues that need to be specified. Also, as for the

MLP networks, the training is slow and may

be trapped in local minima. ‘ _

An RBF network was trained using all 9 fea‘-"
tures listed in section 2. The number of hidden

nodes was limited upwards to 15, and all 15 n-

odes were recruited in the final model. The
training gains were set to e = 0.000004 and

n = O.25.The training set of 996 patterns were
run through 2000‘ times. Training of one mod-

el took approximately 10 hours on a 486 PC.

3.3 Spline modelling (ASMOD)

The ASMOD (Adaptive Spline Modelling of

Observation Data) scheme uses B-splines for

its internal representation [Kavli, 1992].

Spline models use a grid partitioning-of the

input domain, making a set of hypercubes that

fill up the input domain. A polynomial func-

tion is defined for every hypercube in such a

way that the intersection between the differen-

t hypercubes are smooth. The resulting glob-

al function is a piecewise polynomial function

with Special merits with respect to modelling

general multidimensional and nonlinear func—
tions.

TheiASMOD models can also be mapped

into the architecture in figure 1 by-using 'B-

spline basis functions in the hidden layer. The '

set of basis functions are completely defined

by the selected partitioning of the input space.

The basis functions hence contain no parame-

ters that need to be trained, leaving only the
weight coefficients of the output layer to be de-

termined during training. Since linear output .

nodes are used, the weights can be analytical-

ly determined by standard least square fitting .

methods. The results obtained here however,

are obtained with an iterative training algo-

rithm equivalent to (2). The momentum term
was not used (17 = 0). Since thevoptimization

problem is linear and there is no local mini-

ma, the training converges fast to the global

minimum (typically 10 — 20, seconds on a Mac-

intosh).

One of the important properties of the AS—

MOD scheme is that it incorporates a method

for successive refinement of the model. Start—
ing with a coarse partitioning of the input do—

main, the partitioning is incrementally refined

. and adapted tu the structure of the learned

functions. The resulting model thus has an
automatically determined structure which is
determined by the problem, allowing arbitrary

simple or complex functions to be modelled.

The feature used for the ASMOD model—

s were the quantile 0.8, PaceM (5)012, and

GLCM Contrast.  
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3.4 Polynomial Regression Mod-
el (PRM)

Polynomial models were identified for each of
the five classes. The models for each class had
the form given in equation (4), with variable
polynomial degree (linear, quadratic, and cu—
bic, including the corresponding cross prod-
ucts) ,

yJ- = uj + 2153; + ijikil'il'k + ‘ " (4)
1‘ i9: '

Standard linear regression techniques were

used to find the weight coefficients u, v, w, etc.

These are given with alinear system that may
be solved exactly. This method has the advan-
tage over neural networks that it is very fast to

train and we are always sure to find the global
minimum of the error function (1).

Several models with different polynomial de-
grees and variable number of feature variables
were identified. With too many features or

too high polynomial-degree a more " noisy” (in—
homogeneous) classification of the seabed "was
observed. This was most likely due to overfit—
ting to the training data. The results present—
ed here use linear, quadratic and cross product
dependencies of all nine feature variables.

4 Results
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Table 1: Correct classification rates for the
training data and a test data set with the dif-
ferent methods.

Table 1 summarize the rate of correct classifi-

cation of the training data and a test data set
using the different methods. We used a train—
ing set consisting of 996 patterns and a test
set consisting of 1331 patterns. For compari—

son results with aGaussian classifier and a k-
nearest neighbour classifier based on the same
training data are included. The test data are
taken from the same data files as the training
data (October 1991), and from relatively ho—
mogeneous regions similar to but not overlap-

Proc. l.O.A. Volt 15 Pan 2 (1993)

ping the regions used for training. The train-
ing and test data are therefore quite similar,

and an evaluation of the methods based upon
the test data may be susceptible to unrecog-

nized overfitting of the models. MLP models
with 15 and 5 hidden nodes were trained, both

giving good results on the training and test da-
ta, But, due to the above mentioned problems

a ranking of the different methods is difficult
based on this information.
A more reliable evaluation can be done us-

ing completely independent data such as the

Mars 1992 and November 1992 data sets. Un-

fortunately there exists atthe present time on-
ly a very limited knowledge of the true'seabed

types ofthese regions, and an evaluation and

comparison 'of the methods must be done by

visual inspection of how consistent and he—

mogeneous the seabed is classified when data .
from multiple passesover a' geographical re-
gion is processed. I 7
'Figures 2 and 3 show such geographical plot-

s for two regions generated by the four meth-
ods. Figure 2 shows the classification of data
taken from three passes over the same region,
with a different heading of the ship for each
pass. In figure 3 the data are taken from 5
difl'erent passes over the plotted region, here

with four different headings of the ship.
, As can be seen, the ASMOD and the REF

network give very similar-results and consis-
tent classification for the different passes. The
region plotted in figure 2 contains four of the

five bottom'types (all but mud). The only
sample within this area (indicated by a dark
‘cross) consisted of clay and silt. This area is

classified as seabed type 3 which is assumed to

correspond to a medium hard seabed type. A]-

so the other bottom samples agrees well with

the classification of'these two methods.-

Classification with the multilayered percep—
tron model and the polynomial regression
model give a somewhat more “noisy” result.
As can be seen these methods both include
seabed type 5, and pixels from difierent passes

over the same location may be classified as dif—
ferently as type 1 and type 5 (rock andmud).
Such extreme local variations seem very un-

likely, and it is reasonable to interprete this-as, .

misclassifications.

The area plotted in figure 3 is by ASMOD

and RBF consistently classified either as type

1 or type 2. Also in this area the MLP model
mix upseabed type 1 and 5 within small ar-
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eas. This assumed misclassification may either

be due to overfitting of the models, or a prob-

lem with finding a good representation of the
probability functions (improper interpolation
or extrapolation).

5 Conclusions

Four methods for nonparametric statistical

modelling has been tested for seabed classi-
fication. The methods are nonparametric in

the sense that no particular distribution of the
data is assumed. Thisis in contrast to e.g.
Gaussian classifiers which assumes normal dis-
tributions. This gives a potential for the mod-
els to find more accurate models for the data

distributions, and hence more accurate classii

fication borders. But the increased flexibility
may also cause problems due to overfitting to
the training data.

One of the methods, namely multilayered
perception neural networks (MLP) gave high-
er classification rates on the training data and
a test set, but when evaluated on new and in-
dependent data this method seemed to give

less consistent and less accurate classification.
This was probably due to overfitting or extrap-
olation/interpolation problems. Similar ober-
vations were done for polynomial regression
moldes. The other two methods, namely radi-
al basis function networks (RBF) and a spline
based method (ASMOD) gave similar and rea-
sonable results on the independent data set-
s. They also gave results which were similar
to results obtained with normal distribution
(Gaussian) classifiers. An internal ranking of
the RBF and the ASMOD classifiers is difficult
to do based on results reported here. Ground
truthing of one of the classified areas is expect-
ed to be available in the near future, enabling
a more reliable evaluation of the methods.

The Gaussian, PRM and ASMOD models
5 all have the advantage to the neural net-
work paradigms that analytical solutions can

be found for the model parameters, thus avoidv
ing the well known problems of neural net-
works with long training times, sensitivity to
a number of parameters, and the possibility of

getting trapped in local minima during train-
mg.
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