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INTRODUCTION

These last years, modern conception of submarines
has vastly improved their acoustic quieting with the
result that their long range passive detection be-
comes now more and more difficult. Designing ac—
tive sonars for this goal necessitates that high power
V.L.F. emitting arrays be developped.

Due to the limited weight and size ofa towed sonar,
combined with the use of very low frequencies, very
complex phenomenons arise in acoustical interac-
tions between transducers composing the array.

To design such arrays, a very precise knowledge of
these near—field interactions is needed, in order to
forecast both. power distribution per component and
radiatted directivity patterns.

To model accurately small ( the order of the wave-
length ) arbitrary shaped radiatting bodies, and es-
pecially to obtain acoustic near-fields, numerical
Boundary Elements Method is required, By using
these technics, and meshing very realistic objects
( see figure 1 ), we can model the whole array and
its relevant interacting environment. As usual with
Finite Elements Methods, the only limitation con-
earns the size of- numerical algebraic systems to be
solved with computer aid. In three dimensions, ac-
cording to the common % criterion and the required
precise description for geometrical details, we have
usually to computecomplex algebraic systems of
more than 1000 equations. To reduce CPU costs, we
use the Hamdi’s variationnal formulation” based on
Helmholtz Integral Equation and its normal deriva-
tive. By this way, we avoid numerical difficulties due
to the so-called singular integrals appearing in such
technics. Moreover, Hamdi’s formulation provide
symetrical algebraic systems, which are much more
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efficient to solve than usual non-symctrical ones ob~
tained by common B.E.M..

In this paper, we present a complete computer aided
tool for array design which couples the preceeding
BE. Method to an Equivalent Scheme modelling for
each elementary piezo—electric tonpilz transducer.

The interest resides in the fact that heavy ( and ex-
pensive ) numerical modelling is separate from the
optimization procedure, This means that after hav-
ing choosen a geometrical configuration for the ar-
ray ( number and location of transducers, diameter
of their head—mass, baffles, ), we compute all
relevant parameters:

" Mutual acoustical impedances;
" Elementary far—fields.

After that, we use these datas as starting point to
optimize the transducers and the electrical supply,
in order to obtain the required:

" Directivity patterns;
" Sound levels;

and satisfying technological constraints.

The last work consists in simulations of relevant real
working cases, as, for example, components break—
ing .down. This provides a complete survey of the
system performance. '

In section I, llamdi‘s B.E.M. is presented, after what
we describe its use'for V.L.F. array modelling, and
discuss numerical aspects. '

Section II deals with the whole array design proce-
dure. The coupled B.E.M-equivalent scheme model
is presented. '

In Section III, experimental and computed results
are compared. Physical phenomenons are analysed.
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In Section IV, present and future prospects are pre-

sented. In particular, we are presently working on

“extensional transducers modelling in the context of

the presented CAD. tool. Our goal is to keep us-

ing equivalent schemes, for low cost computing, but

taking into account different vibrating modes and

their acoustic coupling.

I. B.E.M.

It has been widely prooved that the only mean to

model underwater vibrating arbitrary shaped struc-

tures is Finite Element Method coupled to Integral
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b) Boz array
Fig.1: examples of meshed arrays

Equations description for the unbounded fluid do—
main. This is due essentially to three points:

* first ofall, analytical methods are limited to
canonical geometries;

" secondly, technics based on asymptotic expan-

sions are also generally limited to high frequency

range;
‘ thirdly, FE. description for the fluid domain is

not well adapted to describe far field conditions.

In the case of a whole array, we suppose that the

environment ( structure, baffles, ) can be de-
scribed by simpleboundary conditions ( rigid, soft

or with a given local impedance ). Moreover, each
transducer head-mass is supposed to vibrate with
a constant but unknown axial velocity V (piston).

Its behavior will be describe later using an equiv-
alent scheme relying V and P"l (mean pressure on
head—mass), and electrical parameters: U and I. By
this way, we avoid the use of finite elements for the

structure and transducers and reduce the size of the

final algebraic system to compute.

The general problem consists in calculating the
acoustical pressure P satisfying Helmholtz equation

and Sommerfeld condition in the fluid domain 9,

plus boundary conditions on the baffles: I‘p=o, I‘.,=o,

I‘. and on active surfaces of transducers head-

masses: 1‘”. The starting point of the method is
the well known Helmholtz integral expression for the
pressure given by:

cm) P(M) = { PlMo)
_ 5PlMol U,

aVlMo)
where c is equal to 1 if M is in (I but not on [1% if
M is on I‘ and I‘ is regular, 0 ifM is interior to I‘; E

is the elementary solution of Helmholtz equation in

three dimension: E(k,M,Mo) = %£ ( assuming
a e“"" time dependance ); k is the wavenumber:

1: El- with w the angular frequency, and C the

acoustic celerity; a—‘l’u is the (exterior) normal deriva-
tive operator.

0E(Ic,M, Mo)
6"(1%)

E‘(lc,M,Mo) ) 4r

 

A first method consists in discretizing F in surface
finite elements at this stage. Then equation (1) is
written at each node of the mesh, and interpolation
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in each element is used to compute integrals. This
provides the following algebraic system:

{P} = [A] {P} +' [B] {V} (2)
where P is the vector of nodal pressures, V is the
vector of nodal normal velocities, A and B are the
matrices representing the kernel of respectively the
first and second integral of equation

Then applying the boundary conditions, one can ob-
tain, with system (2), both pressure and normal ve-
locity on F.

It is to underline that system (2), resulting from a
list of equations, is a non-symetric one. Moreover,
the singularity apearing principaly in the first in—
tegral of equation (1) has to be mentionned. To
compute A and B matrix of equation (2), semi-
analytical special treatments are required, and the
computation becomes complex.

M.A.Hamdi[‘] proposes another way of solving the
problem. Before discretizing the surface, we build
a symetrical variational formulation using equation
(1) and its derivative form. We describe, in Ap-
pendix, how such a formulation can be obtain, when
1" is reduced to I‘,, + I). This case corresponds to
our practical application, but it will be easy to ex—
tend equations to the general problem.

This technique presents essentially two advantages.
First of all, all the integrals are regularized by the
fact that the dimension of the integration space is
now 4 (double surface integration). For instance,
in the case of D matrices, the most singular ones,
the kernel of the integral is singular asFly as well
as the whole integrals become regular. It is then
very easy to compute all the terms accurately using
common numerical technics (Gauss). Secondly, the
algebraic complex system given by equations (A5),
(A6) is symetric. This allows us to use the most
efficient numerical algorithms to solve it.

Let us now consider the present application. A sur-
face mesh is generated as close as possible to the
real geometry of the array and its environment ( see
figure 1 ). Each surface is characterized by its 10-
cal impedance, except radiatting head-masses, We
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want to compute the 2}} term of the in-untenna
acoustic impedance matrix between transducers i
and j defined by:

Fr Zii iN V1

_5 = : : 3 (3)
PN Zia Ziwv V"

where R, is the mean pressure over the radiatting
surface of the transducer 1', and V.- its axial velocity.

To do so, we successively impose:

Vi = 1
Via“ = 0

for i in {1,2,...,N}, and compute every 2% =fij,
Actually, we use the symetry of Z“ matrix, and only
wterms have to be calculated (instead of N2).

Furthermore, we also compute, for each transducer
i, what we call the elementary far-field Pi”. This
job consists — after having solved the system {(A5)—
(A6)} and then knowing P and 3—: on I‘ — to'use
equation (1) for M in 9 and is just a post-processor
procedure for which CPU cost is not prohibitive.
For each point of the directivity patterns, complex
radiatted pressure is computed. These results will
be used later to obtain directivity patterns corre-
sponding to a given excitation for the whole array,
by the way of a very simple summation:

N

D: HEM-Pm
i=1

Finally, radiatted sound level will be computed iden-
tically,

Ending this chapter, a few numerical points have to
be discussed, First of all, the so—called irregular fre—
quencies for which B.E.M. cannot provide a unique
solution for the exterior problem were treated, when
necessary, using aditional interior boundary ele-
ments (for example with 11., = 0). This technic was
successful in all current applications.

The second remark concerns the criterion for ele—
ments size. Commonly, a % is adopted. Neverthe—
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less, modelling small objects - head-mass diameter

of% — much more elements per »\ are needed.

II. Transducers Modelling - Array design

In this section, we present the whole design process

for a V.L.F. high power emitting array. This one

uses common active arrays design technics, but tak—

ing into account aditional constraints due to very

low frequencies.

If we suppose that elementary transducer acoustic

behavior and geometrical dilfraetion effects of the

whole array are independant, then common design

procedure consists in two separate steps. First of

all, rough models — for instance, monopoles arrays

— are used to define both sources location and rel-

ative weight, such that acceptable directivity pat-

terns can be obtained. Secondly, elementary trans—

ducer is studied in order to satisfy central frequency,

radiated power, .. ,, [t is clear that these parame~

ters are obtained for a priori radiation conditions,

non related to the real in antenna ones, Neverthe-

less, array directivity index calculated in the first

step is used to determine each transducer power.

As we stressed in introduction, for V.L.F. arrays,

transducers acoustic loads are dramatically influ-

enced by the array geometry (head-masses diame-

ters and locations, baffles) and the actual velocity

distribution per component: acoustic mutual inter—

actions have then to be considered when designing

the elementary transducers.

The proposed design procedure introduces, in the

first step described before, the use ofB.E.M. to im-

prove tlie choice of the array geometry. This means

that we compute the directivity patterns due to opti—

mal velocity distributions and compare them to the

desired ones. In a way, it consists in a first manual

optimization of baffles. Nevertheless, it is clear that

the choosen velocities will be modified when taking

into account transducers constraints — for example

electrical supply grouping —, This implies that it

will be neccessary to simulate the whole array be-

havior when it is totaly designed.
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Having choosen a geometrical configuration, both

mutual acoustic impedances Z3 and elementary far-

field Pf”, provided by the B.E.M. program, are used

to design elementary transducers as follows:

In the case of a tonpilz, the following equivalent

scheme is adopted:

 

where U and I are the electrical parameters, F‘I and

V the acoustic force and velocity, Co the static ca-

pacitance, (I) the electro—mechanical factor, Cm the

motional compliance, M, and M2 the head and tail

masses, Rm the losses resistance and Z“ the acous-

tic load.

The unknown parameters are (P, 0..., M; and M2.

Co can be deduced from (P and R," can be estimated

from the transducer technology.

Then, we adopt an iterative procedure to find op-

timal transducers set, such that the whole array

emitted power, in its frequency range, corresponds

to the desired one. On an industrial point of vue,

the definition of a unique transducer will be deeply

preferred, Nevertheless, when impossible — due to

technological constraints: weight, dimensions, . . . —-

, the presented general procedure remains applica-

ble in order to design several difi'erent components.

Our own experience showed that such an optimiza-

tion needs computer aid.

To model the whole array, we used a modified form

of the matricial system (3):

if“) = [Z] {V} (4)
where F,“ = Sip.- and 2.3- = 5.2,;- with S.- the sur-

face of transducer 1'. The equivalent scheme provides

the following matrix relation for transducer 1':

{3:}= ti: tézllt‘} <5)
In the case of a voltage supply,we duplicate the first
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equation of (5) for each component (the second one
if a current supply):

U' Mb 0 0 F1“
w 0 M3, 0 F;

I = : : ' : +

U "’ 0 0 Mfl F;
Ml2 0 0 V1
0 M122 0 v2
: : - : : (6)

0 0 Mg VN

Combining (4) and (6), we obtain:

{U} = [2°] {V} (7)
with

{2.5 Mitzi; + Mi2
ZS = MhZ-‘i . 5%.1'

This matricial relation can then be used directly to
obtain each elementary electrical supply from opti-
ma] velocities. This implies that each component is
driven separately from each others. Actually, con-
sidering industrial constraints. another solution is
often preferred consisting in supply grouping.

A relevant method consists in grouping transducers
driven approximatively by the same voltages. In-
verting (7), real velocity distribution and associated
new array performances (directivity patterns, sound
levels) are then calculated.

In conclusion, each step of the optimization proce—
dure consists in:

l: calculation of Z“ matrix;
2: computation of U by inverting (7);
3: choice of supply grouping;

4: computation of realV;

5: calculation of real directivity patterns and
sound levels;

6: comparizon to the specifications and evaluation
of technological faisability;

7:, modification of 11>, Cm, M1, M2.

For now, the choice of the initial <I>, Cm, M1, M2
(and Rm): as well as step 7, needs a lot of hu»
man know-how. Nevertheless automatic processes
are prospected in THOMSON SINTRA ASM labo-
ratories. In theory the seven steps have to cover the
whole frequency range. Practically, steps 1, 2 and 3
are performed only for the central frequency.
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III. Experimental and theoretical results

A three staves array was modelled and measured,
in order to validate the presented tool. The active
pannel is about 1) X 1.5/\ in size, and composed of
% diameter head-masses,

Directivity patterns, sound levels and electrical im-
pedances have beenmesured in the three difierent
excitation cases: parallel, weighted and steered.

Figures ‘2 to 4 show a good agreement between ex~
perimental and theoretical directivity patterns in
the three cases.

  

Fig.2: Directivity pattern - bearing - ka : 0.6
Parallel excitation case

( "‘ theory ; — measurement)
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Fig.3: Directivity pattern — bearing - ka 2 0.6
Weighted excitation case
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Finally, figure 7 give the computed and measured
sound levels.
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Fig.4: Directivity pattern - bearing - ka = 0.6
t I ' . .S eerEd exmat'o“ case Fig.6: Lateral staves - resrstance

Due to geometrical diffraction efl'ects, lateral and
central staves have very different impedances, as we
can see on figures 5 and 6 (real part of electrical
impedance in the parallel excitation case)

III . -.     
Fig. 7: Sound level
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IV. Future developments
Fig.5: Central stave — resistance
(El theory ; — measurement)

Two major improvements are presently being inves- {
tigated. The first one consists in introducing au-
tomatic optimization algorithms. For the moment, ‘
we are working separately on geometry andvelocity ‘
distribution, and on transducers design. Knowing i‘
the geometry, and using Zi'i and 13,9", it is relatively ‘
easy to optimize the velocities. To do the same with
the baffles (location, size, impedance) represents a
much more difficult work. More. each optimization
step requires a new mesh for the whole problem, and
CPU costs then increase dramatically.

The differences appearing between theory and ex-
periment on figure 5 are to be justified, First of all,
theoretical results are strongly dependent on trans—
ducers losses Rm, and especially close to the res
onance frequency. Secondly, manufacturing spread-
ing between components impacts on acoustic charac-
teristics around resonance frequency. Let us under-
line that such spreading can be taken into account
by the presvnh‘d program.
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Nevertheless, it has been shown, in our laboratories, that great improvements can be obtained by using
simple passive bafiles. Automatic optimization for elementary tranducers design is also of great interest,
especially when strong technological constraints request more than one type of components. Now it seems
to be very difficult to avoid human help for this goal.

The second research topic on array modelling concerns other kinds of transducers such as flextensional
ones. The main difl'erence with the tonpilz resides .in the fact that using only two acoustic parameters
(F, and V) are no more sufficient to describe the whole behavior, when several flextensional transducers
are located close to each others, and so interacting strongly. An original way of modelling this problem
is to take into account several velocity distributions on the wet surface, as what we call working modes.
This modes, completely different from the natural in—air ones, can be given, for example, by the in—water
response of the transducer, with different baflie conditions (free-space, rigid or soft planes at different
locations). To compute them, elastic and piezoelectric structures can be modelled by F.E.M. coupled
to B.E.M. to describe acoustic radiation. This work can be done without prohibitive CPU cost, by
meshing a unique transducer. After that, a similar procedure as described before is adopted. System (3)
is computed but in the following form:

Pi. Ziin Zia: LN. V1-
Pi, Zia]. in, .1an VI:

= : : -. : Z (3)

PM 27v.“ Zim. --» ZivnN. V”-

where P“ and V, are the amplitudes of pressure and velocity projected on the mode k of the transducer
1', and with the corresponding notation for Z" matrix indices.

It is just the begining of this research, but first conclusions (one-dimension array of two, three or more
flextensional transducers)seem to be promising.

CONCLUSION

A powerful computer aided tool has been developped and validated for the design of V.L.F. emitting
sonar array design. This program, coupling an efficient numerical technic, the B.E.M., and the common
and easy to handle equivalent scheme model, has already allowed us to find interesting technological
solutions for controlling directivity patterns with passive baffles.

The optimization procedures seem to be more and more precisely defined and so we can hope that artificial
intelligence will soon apear in our field.
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Appendix

Let us consider 1‘ reduced to I‘.J + F. defined as follows:

6v
%=PS,VM6FV

P(M)—_z‘;fM =0,VMer.

In order to form a bilinear quadratic form, we substitute equation (1) and its normal derivative by the

two following equivalent. ones:

1 as 0P0 '
— Pd— P—ddr+fl- -—EddI‘=0,V A1_ 2/; 1/17 Mooay°¢7 0 Tina”) M 0 ¢ () ‘

1 69 any 0P0 as ’
a 7 Ready — flit) Poayoauzpd'ydl‘o +fl n, ma d7dl‘o _ 0 , Vip (A?)

where 7 is a part of I‘. The subscript 0 (respectively no subscript) means that the function is taken on

Mo (respectively on M).

 

Then, writing (A2) for 7 = F.“ and (A1)—(A2) for 7 = I‘., with (p = Zip, and applying the boundary

conditions‘ we obtain: .
t

i 0 3215 fl 1/ 62E 1 a_r: i
2 fl P" vdr _ fll‘xflli-m PD 61/9611 ‘pdrdro — r_ rm P0 iii/gall - 2 6y vdrdro l

i
i
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+[/ 1/ Pfloia—Egodrdro =0, in; (A3)
r" r“, (91/

1 as 6E 02); as 025_flrlflrmPo{§E+ (370+E) +Zaway}¢dFdFu—fllflI-‘WPU (a—W -zMal/) wrer l

+// J P3,, (s—za—E) wrer = o, vw (A4) 1
I“. no 0"

the following system in which matricial terms (in (A5), respectively (A6) ) apear in the same order as
Let us now discretize F in Boundary Finite Elements, the preceeding equations (A3) and (A4) provide i

corresponding integral terms (in (A3), respectively (A4) ): i

%[C]{P3}-[va]{Pv}-([Dv.]—%[Bv.]) {P.}+[Bw1 {P?}={0} . (As)
W—r W

l (53} (53)

— [Au] +.lBs:] + (Bul‘ + Z [Dll]) {P1} _ ([BIV] ‘ z[DIV]) {Pl} + ([AIV] _ z [BIVD {PB} : {o}

[5.1
(A6)
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