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An approach for investigation of geometrically nonlinear vibrations of functionally graded 
shallow shells and plates with complex planform is proposed. It combines the application of the 

R-functions theory (RFM), variational Ritz’s method, the procedure by Bubnov-Galerkin and 
Runge-Kutta method. The presented method is developed in the framework of the first–order 

shear deformation shallow shell theory (FSDT). Shell panels under consideration are made from 

a mixture of ceramics and metal. Power law of volume fraction distribution of materials through 

thickness is chosen. Investigation of nonlinear vibrations of functionally graded shallow shells 
and plates with arbitrary planform and different types of boundary conditions is carried out. Test 

problems and numerical results have been presented for one-mode approximation in time. Effect 

of volume fraction exponent, geometry of a shape and boundary conditions on the natural 
frequencies is brought out. 

 Keywords: functionally graded shallow shells. 

 

 

1. Introduction 

Shell constructions find rather wide application in various industries such as aircraft, rocket, 

aerospace, nuclear, industrial and civil building. The increasing need to produce lighter-weight 

aerospace shell structures has led to using advanced materials.  In practice, as a rule, these elements 

are carried out from modern composite and functionally graded materials (FGM) that allow 

adjusting deformation, strength and dynamic characteristics of designs. In some advanced 

technology systems these structural components may exhibit a significant nonlinear behavior that 

should be taken into consideration.  

Various shell theories and numerous analytical and numerical methods were developed in the 

past. A number of reviews concerning nonlinear dynamics of laminated composite and FGM plate 

and shells have been published in [1-4].  
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The analysis of published literature on the problem of nonlinear vibration and stability of 

laminated and FGM shallow shells and plates shows that practically all researchers consider 

rectangular or circular planform and classical boundary conditions. It should be noted that papers, 

where problems of nonlinear vibrations of multilayered and FG plates and shells of an arbitrary 

shape are seldom met. However, shells of arbitrary planform and mixed boundary conditions are 

widely used in practice. When practical structures of different geometric form are to be fabricated 

using FGM, the mechanics of FGM structures of complex shape requires to be studied. 

2. Mathematical statement of problem 

We consider composite shallow shells made of ceramics and metal. The power law of volume 

fraction of the ceramic phase is defined as [2, 3]:  
k
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where h is a thickness of the shell, k is the power law exponent (   k0 ). For general case 

material properties of FGM’s (elastic modulus, Poisson’s ratio, density) can be presented by the 

formula:  
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where jP  and jV  are material properties and volume fraction of the thj   constituent material. It 

may be noted that FGM structures are widely used in the high-temperature environments and their 

mechanical characteristics might be different in depending on temperature changing. This 

dependence should be taken into account for obtaining more exact solution. We use the following 

expressions for it [3, 4]: 
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where P0 , P 1 , P1 , P2 , P3 are the coefficients defined for each certain material. Mechanical 

properties of mixture of two composites are determined by the formula: 
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Here mc PP ,  are the corresponding characteristics of ceramics and metal.  

Denote displacements at any shell point by values 321 ,, uuu . According to the nonlinear theory 

of shallow shells of the first order they can be written as [2]: 

wuzvuzuu yx  321 ,,   , 

where u, v are middle surface displacements along the axes Ox and Oy respectively, w is the 

transverse deflection of the shell along the axis Oz, yx  ,  are angles of rotations of the normal to 

the middle surface about axes Ox and Oy. 

Relations for deformations    T
122211 ,,   ,    T

122211 ,,    are expressed by the 

formulas:  

 2,1,,  jiND
ij

L
ijij   , 

where  

xy
L

yy
L

xx
L vuRwvRwu ,,/,/, 122211    ,    (1) 

yx

ND

y

ND

x

ND wwww ,,,,
2

1
,,

2

1
12

2

22

2

11    , 

yyxx ww   ,,, 2313  , xyyxyyxx ,,,,, 122211   .  

The relations between stress and strain resultants in matrix form are given by the following 

formulas 
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        BAN  0 ,          DBM  0 ,     (2) 

 

where    T
NNNN 122211 ,,  are forces per unit edge length in the middle surface of a shell, 

   T
MMMM 122211 ,,  are bending and twisting moments per unit edge length, components of the 

vectors    T0
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122211 ,,    are defined by expressions (1). Elements of the 

matrixes      DBA ,,  have the following form: 
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If Poisson's ratios of the constituent phases are such that cm   , then elements ijijij DBA ,,  of the 

matrixes in formula (3) may be calculated easily and relation (2) will have the following type: 
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Potential and kinetic energy are given by the formulas: 
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Transverse forces xQ , yQ  are defined as: 

2333
2

1333
2 ,  AKQAKQ sysx  , 

where sK 2  is a shear coefficient assumed equal to 6/5 . 

The equations of motion in the framework of the refined geometrically nonlinear theory of the 

shallow shells of the first order have been obtained in [2, 3]. These equations are supplemented by 

certain boundary conditions determined by the fixing way of edge of the shell.  
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3. Solution method 

 

The suggested method for investigating the geometrically nonlinear vibrations of the FG shallow 

shells provides, at the first step, the solution of a linear problem. To solve it, the variational 

structural method is used, based on the application of the R-functions theory and variational 

methods, in this case we apply the Ritz’s method. The method for solving the linear problems of FG 

shallow shells is described in [5]. When solving a nonlinear problem, we ignore the forces of inertia 

in the plane. Introduce unknown functions in the following form:  
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the main vibration form. Coefficient of this expansion is function  ty  depending on time. 

Functions 1111,vu  might be solutions of the following system of differential equations: 
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Operators 21122211 ,,, LLLL  in equations (5) are defined as: 
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System (5) is supplemented by the corresponding boundary conditions. Solution of this problem 

is carried out by means of the R-functions method (RFM) [6]. Taking into account such a choice of 

functions ),(11 yxu , ),(11 yxv  and substituting expressions (4) in the equation of motion and 

applying the procedure of Bubnov-Galerkin, the following nonlinear differential equation of the 

second order is obtained: 
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Values for coefficients of equation (6) have been obtained in analytical form. They are expressed by 

the double integrals of unknown functions:  
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Solution of equation (6) has been implemented by method of Runge-Kutta.  

 

4. Numerical results 

The validation of the solution structure, software and the accuracy of the proposed method was 

carried out on the test problems. The numerical values of the natural frequencies for clamped and 

simply supported functionally graded cylindrical and spherical shell panels were compared with the 

published results in works [8, 9]. Examples include cylindrical ( RRx   and yR ) as well as 

spherical ( RRR yx  ) shell panels with all edges clamped (CCCC) or simply supported (SSSS). 

Particular cases of these are also considered: isotropic materials (the whole ceramic, 0k , and 

whole metal, k ) and plates (  yx RR ) [7]. 

The following material properties are used: 

Aluminum:            GPaEm 70 , 3.0m , 3/2707 mkgm  ; 

Alumina:               GPaEc 380 , 3.0c , 3/3000 mkgc  . 

The non-dimensional frequency is given as:  

D

h
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The free vibrations of clamped and simply supported FG cylindrical and spherical shell panels 

are analysed. In Table 1 the fundamental frequency of square clamped FG spherical shell panels 

composed of Aluminium and Alumina with side-to-thickness ratio h/a=10, various side-to-radius 

ratios R/a and power law exponents k are presented. 

 
Table 1: Fundamental frequencies of CCCC square spherical shell panels, h/a=10 for various R/a and k 

 

k Source R/a=1 R/a=5 R/a=10 R/a=50 Plate 

0 RFM 123.3867 75.3315 73.2306 72.5443 72.5156 

  Ref.[8] 122.3533 75.281 73.2322 72.5633 72.5353 

0.5 RFM  104.6467 62.3415 60.4591 59.8532 59.8315 

  Ref.[8] 103.149 62.0789 60.2831 59.7265 59.7142 

1 RFM  94.0795 55.3867 53.6488 53.0936 53.0755 

  Ref.[8] 92.6962 55.2302 53.5864 53.0895 53.0835 

10 RFM  66.7355 42.4042 41.3755 41.0518 41.0424 

  Ref.[8] 65.7018 41.8796 40.8883 40.5946 40.5929 

∞ RFM  55.7515 34.0388 33.0896 32.7795 32.7665 

  Ref.[8] 55.2827 34.0141 33.0884 32.7862 32.7735 
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It is clear to see that the results of the present approach in Table 1 agree well with referenced 

ones. 

Then to illustrate the opportunities of the proposed method the shells with complex plan-form 

are analysed. The effect of boundary conditions, the shape of the plan, curvatures on the 

fundamental frequencies has been examined. 

Two types of shapes for shallow shells are observed. First shape is a FG shallow shell with 

rectangular cuts. It may be clamped or simply supported. Its plan-form is presented in Fig. 1. The 

geometrical parameters are: 1
a

b
; 25.0

2

1 
a

a
; 45.0;4.0;35.0

2

1 
a

b
. 

Second shape is a FG shallow shell with circular cuts. Its plan-form is presented in Fig. 2. 

Geometrical parameters are: 1
a

b
, 2.0

2


a

r
. 

 
 Figure 1. Plan-form of shell panel with 

rectangular cuts 
Figure 1. Plan-form of shell panel with 

circular cuts 

 

Let us present the results for the free vibration of simply supported FGM shell panel with 

rectangular cuts. The boundary conditions of simply supported shells are the following:  

 

  1,,0  yxu x ,     2,,0  yxv y ,      yxw ,,0 .  

To satisfy the main boundary conditions it is necessary to construct the following solution structure 

[10]: 

11PU  , 22PV  , 3PW  , 41Px  , 52Py  ,        

where 54321 ,,,, PPPPP  are indefinite components; 

01   is the equation of parts of boundary domain 1  parallel to the axis OX; 

02   is the equation of parts of boundary domain 2  parallel to the axis OY; 

0  is the equation of the whole boundary domain  . 

Using the R-function operations the equations of domain are built.  

In order to get correct results for considered case it has been done a solution about gradual 

increase of cut size, so first domain was constructed with values 01.02/1 aa  and 49.02/1 ab . 

It is obvious that this shell with rectangular cuts tends to square shell panel quite close and hence it 

is clear that results for square shell panel and shell with small rectangular cuts are very close as well 

(see the values from two first columns of Table 2). 

So, these rectangular cuts have been expanded from size of cuts 1.02/1 aa  and 45.02/1 ab  

by gradual increasing to size of cuts 25.02/1 aa  and 3.02/1 ab . Table 2 presents the 
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fundamental frequency of simply supported FG cylindrical shell with side-to-thickness ratio 

h/2a=0.1, side-to-radius ratios R/2a=10, different shapes of domain and several power law 

exponents k. 

 
Table 2: Fundamental frequencies of SSSS cylindrical shell panels with rectangular cuts, h/a=0.1, 

R/2a=10 for various k and cut sizes 

 

  Cut Cut Cut Cut Cut Cut Cut 

k 01 a  01.01 a  05.01 a  1.01 a  25.01 a  25.01 a  25.01 a  

  01 b  49.01 b  48.01 b  45.01 b  45.01 b  4.01 b  3.01 b  

0 42.43 44.58 43.88 48.83 47.48 54.74 80.53 

0.2 38.78 40.83 40.14 44.76 43.51 50.21 73.79 

0.5 34.81 36.76 36.08 40.33 39.17 45.26 66.43 

1 30.8 32.61 31.97 35.8 34.75 40.19 58.91 

2 27.4 29 28.44 31.83 30.9 35.73 52.35 

10 24.18 25.25 24.93 27.6 26.87 30.87 45.48 

∞ 19.17 20.14 19.82 22.06 21.45 24.73 36.38 

 

It is seen that linear natural frequencies of fully clamped shell are higher than results for the same 

shell with fully simply supported boundary conditions. It is clear that clamped boundary condition 

makes higher stiffness in the shell compared to simply supported boundary condition. 

Now the free vibrations of clamped FGM shell panel with circular cuts are studied. The 

boundary conditions for this case are the following: 

0 yxwvu  . 

The solution structure for FSDT can be taken in the following form [10]: 

1PU  , 2PV  , 3PW  , 4Px  ,  5Py  , 

where 0  is an equation of the border of the shell planform. 

We construct the equation of the border 0  using the R-operations. 

Table 3 presents the fundamental frequency of a clamped FG shell panel with circular cuts 

2.02/ ar  with side-to-thickness ratio 1.02/ ah , considering various types of shapes aR 2/ , 

and several power law exponents k. 

 
Table 3: Fundamental frequencies of CCCC shell panels with circular cut R/2a=0.2, h/a=0.1 for various k 

and types of shell 

 

k Cylindrical shell  Spherical shell Parabolical shell 

 

0
2


a

Rx , 10
2


a

Ry  
a

Rx

2
10

2


a

Ry  10
2


a

Rx , 10
2


a

Ry  

0 116.76 117.03 116.86 

0.5 97.01 97.24 97.13 

1 86.32 86.53 86.44 

10 65.39 65.52 65.47 

∞ 52.75 52.88 52.80 

 

From Tables 3 it followed that for different shapes of shell the values of fundamental frequencies 

are differed starting with the third sign. It is absolutely agreed with the physical statement of 

problem: it is obvious that curvature does not essentially influent on frequency for a case of 
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clamped shell. 

 

5. Conclusion 

Vibrations of functionally graded shell panels with an arbitrary shape of plan are studied. 

Proposed method is based on the application of the R-functions theory (RFM), variational method 

by Ritz, the procedure of Bubnov-Galerkin, and method of Runge-Kutta. Paper describes algorithm 

of reducing nonlinear system of the differential equations with partial derivatives to nonlinear 

system of the ordinary differential equations. The coefficients of the system obtained are presented 

in an analytical form through double integrals of known functions. Numerical results for FGM 

shallow shells with complex plan-form and different boundary conditions have been presented. Test 

experiments provide a good agreement of calculated results with published ones. Geometrical 

analysis of natural frequencies for cylindrical and spherical shell panel has been done. Variation of 

cut values are observed for square shells with rectangular and circular cuts and analyzed by the 

gradual increase of cut size that contributes better study of obtained results. 

. 
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