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In this paper, we apply the multi-scale analysis developed by one of the author and predict sound
absorption coefficients for normal incidence from the microscopic structures. Poroelastic sound
absorbing media are generally classified into foam material and fibrous material. Here we capture
the characteristics of micro structure of polyurethane foam and fibrous felt from the observa-
tion by SEM such as the pore size, thin membranes of polygonal faces and fiber diameter, and
construct unit cell models assuming that sound absorbing materials have a geometric periodicity
in microscopic point of view. We obtained practically good agreements between measured and
calculated sound absorption coefficients.
Keywords: Microscopic structure, Poroelastic, Sound absorption, Homogenization, Material de-
sign

1. Introduction

Noise reduction is one of the major issues in automotive engineering to secure quietness in pas-
senger compartments. One possible measure is to absorb sound by utilizing poroelastic media, e.g.,
floor carpets and dash insulators. In the design process of a vehicle, it is necessary to predict the
macroscopic performance of poroelastic media, such as their sound absorption coefficients. Poroelas-
tic material is composed of solid and fluid phases and the macroscopic performance of a poroelastic
material is governed by the characteristics of each phase. Since those characteristics depend signif-
icantly on the microscopic geometry of the poroelastic material, predicting the macroscopic perfor-
mance from the microscopic geometry would be essential for profound understanding of the physical
behavior involved.

Macroscopic properties and governing equations can also be derived from the microscopic geome-
try by using the homogenization theory based on the method of asymptotic expansions, assuming that
geometric periodicity exists on the micro-scale. Auliault et al. [1] considered a macroscopic descrip-
tion of rigid porous media saturated with an incompressible viscous fluid and derived a macroscopic
permeability tensor that they verified experimentally. Terada et al. [2] studied the macroscopic charac-
teristics of deformable poroelastic media saturated with an incompressible viscous fluid and presented
numerical results to show the practical applicability of their approach. Lafarge et al. [3], Boutin et
al. [4], and Lee [5] derived the macroscopic models of sound propagation through rigid porous media.
Air contained in pores was modeled as a compressible viscous fluid, and the thermal dissipation from
the fluid phase to the solid phase was also taken into account. Levy [6], and Burridge and Keller [7]
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derived the macroscopic governing equations of deformable poroelastic media saturated with a com-
pressible viscous fluid. However, the thermal dissipation from the fluid phase into the solid phase was
not taken into account and accordingly, the bulk modulus of the fluid phase was assumed to be con-
stant. Although sound absorption in poroelastic media is a typical multiphysics phenomenon where
the behavior of the elastic solid, the compressible viscous fluid and the fluid temperature must be all
considered at the same time, the studies mentioned above deal with only some of the physics observed
in sound-absorbing poroelastic media.

Therefore, in the study presented here, we apply a general and complete model that describes the
macroscopic properties and the governing equations of sound-absorbing poroelastic media using the
mathematical homogenization method. This model takes into account the motions of the elastic solid
and compressible viscous fluid, and the distribution of temperature in the fluid.

The remainder of this paper is organized as follows. Section 2 gives a brief description about the
homogenization method for sound-absorbing poroelastic material. Section 3 presents the application
of the homogenization approach to fibrous poroelastic materials and investigate the performance and
the relationship between air flow resistivity and fiber diameter. Section 4 concludes this study.

2. Homogenization of sound-absorbing poroelastic material
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Figure 1:Schematic view of homogenization of sound-absorbing poroelastic material.

Here we give a brief description of the homogenization method applied in this study. Please refer
to a published paper [8] by one of the author for the theory and the procedures of the homogenization
of sound-absorbing poroelastic material.

We assume that the solid phase is composed of linear elastic material and that the fluid phase is
saturated with a compressible viscous fluid. The domain of the fluid phase is assumed to be connected
throughout the material. The solid phase is governed by the linear equations of elasticity and the fluid
phase by linearized Navier-Stokes equation since infinitesimal harmonic motions are assumed. The
fluid phase is also governed by the Fourier’s law for thermal conduction assuming that the solid phase
can maintain isothermal conditions. The mass conservation law and the state equation of gas are also
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included. The continuity conditions for the velocity, the strain and the temperature are imposed at the
boundary between the solid and fluid phases.

We assume a solution in the asymptotically expanded form for physical variables such as displace-
ments of the solid phase and pressure of the fluid phase. Then the expanded forms of are substituted
into the governing equations described above. By collecting terms with same orders, boundary value
problems for microscopic scale are derived. These problems can be numerically solved by using fi-
nite element method. Furthermore, by averaging the solutions, we can obtain macroscopic material
properties that can be used in macroscopic boundary value problems.

3. Application to fibrous poroelastic material

Figure 2:SEM images of typical fibrous poroelastic materials.

We apply the method to a fibrous felt as shown in Fig.2. Fiber diameter generally ranges from 1
µm to several hundredµm. This type of material usually expects high absorption coefficient above 1
kHz.

3.1 Effect of fibrous diameter

Figure 3:Uniform fibrous poroelastic material of constant porosity 0.96 with various fiber diameter:
fiber diameter is 4µm, 8µm, and 20µm.

Two dimensional unit cell models for fibrous felt are considered. Fiber is assumed to be located
periodically and uniformly as shown in Fig.3 and porosity is constant as 0.96. Fiber diameter ranges
from 0.2µm to 100µm that corresponds to unit cell size ranges from 1.0µm to 500µm. For sim-
plicity rectangular fiber section is also assumed. Polypropylene is selected as fiber material. Young’s
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Figure 4:Absorption coefficients for various fiber size.

modulus and mass density are 1.35 GPa and 900 kg/m3, respectively. Poisson’s ratio is 0.40 and the
loss factor is set to 0.30. Unit cell is discretized by 402 cubic 1st order elements.

Sound absorption coefficients are calculated as shown Fig.4 by applying the homogenization
method based on the asymptotic approach. Fiber size around 15µm is found to exhibit relatively
high absorption from 2 to 6 kHz.

Figure 5:Relationship between air flow resistivity and fiber size.

Air flow resistivity tensorσij can be directly calculated in the homogenization process. Gen-

erally, Air flow resistivity tensor is defined asσijvi = − ∂p

∂xj

. On the other hand, the mean ve-

locity averaged over a unit cell can be expressed using the homogenization method as⟨w(0)
i ⟩Y f =

⟨ξji (y)⟩Y f

(
−∂p(0)

∂xi

)
. Comparing with these equations, air flow resistivity is obtained as follows:

σij = ⟨ξji (y)⟩−1
Y f (1)

In the calculation of air flow resistivity tensor, quasi static condition is applied by imposing very
small excitation frequency of 0.001 Hz. From Fig.5, logarithm of fiber size and logarithm of air flow
resistivity is found to be proportional. Since fibers are distributed uniformly, the distance between
fibers is also proportional to air flow resistivity.

Once air flow resistivities are obtained, empirical Delany - Bazley model can be applied for a
model of fibrous poroelastic material. From Fig.6, poroelastic materials with fiber diameter larger
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Figure 6:Absorption coefficients by Delany-Bazley model.

than 10µm which have air flow resistivity less than 100 kNs/m4 can be described well by Delany-
Bazley model. For fibers narrower than 10µm, several peaks appear in absorption spectrum.

3.2 Effect of compression

Figure 7:Compressed fibrous material of fiber diameter 20µm with variable porosity (2D): porosity
is 0.99, 0.96, and 0.84.

Next we consider the effect of compression of fibrous felt which is usually applied in manufactur-
ing processes. 2-dimensional fiber models are prepared with constant fiber size of 20µm. The size of
unit cell is varied from 50µm to 400µm as shown in Fig.7. Here fibrous materials are assumed to
be compressed uniformly in each directions, although they are generally compressed in one direction.
As shown in Fig.8, 3-dimensional fiber models are also constructed whose orientations are only0◦

and90◦ for simplicity.
Sound absorption coefficients are calculated as shown Fig.9 by applying the homogenization

method based on the asymptotic approach. Fibrous material with porosity from 0.92 to 0.98 can
be described by Delany-Bazley model.

Since fiber size is kept constant unlike the models in the previous section, porosity can be an
alternative parameter for material characterization. However, neitherϕ nor 1 − ϕ is proportional to
air flow resistivity. The width of air flow path can be considered to be an important factor as viscous
dissipation is generally significant. Thus, we now define a new parameter as the mean fiber distance
df . When we consider a 2-dimensional unit cell model that hasn rectangular fibers of the sized
within rectangular region ofa2, porosity is expressed as

ICSV24, London, 23-27 July 2017 5



ICSV24, London, 23-27 July 2017

Figure 8:Compressed fibrous material of fiber diameter 20µm with variable porosity (3D): porosity
is 0.98, 0.92, and 0.68.

Figure 9:Sound absorption coefficients by homogenization approach and Delany-Bazley model.

ϕ = 1− nd2

a2
(2)

The mean fiber distancedf can be expressed as

df =

√
a2

n
− d =

(
1√
1− ϕ

− 1

)
d (3)

From Fig.10, logarithm of the mean fiber distancedf is well proportional to logarithm of air flow
resistivity for both 2-dimensional and 3-dimensional models.

4. Conclusions

The homogenization method for sound-absorbing poroelastic material are applied for fibrous
poroelastic material. Predicted sound absorptions for fibrous materials that has air flow resistivity
less than 100 kNs/m4 agree well with those by empirical Delany-Bazley model. The mean fiber dis-
tancedf is newly defined here and is found to be well proportional to air flow resistivity for both
2-dimensional and 3-dimensional models.
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Figure 10:Relationship between air flow resistivity and mean fiber distance.
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