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Resonant gas oscillations and related nonlinear phenomena in a resonator of square cross sec-
tion are studied by numerically solving the system of Navier–Stokes equations for compressible
fluid flows. Large-scale and three-dimensional computations of unsteady motions of compressible
thermo-viscous fluid are performed with second-order central differences in space and a third-
order Runge–Kutta method in time. The gas oscillation is supposed to be excited by a harmonic
oscillation of the resonator with the fundamental resonant frequency, and the resulting flow is an
acoustic standing wave in the case of sufficiently weak excitation or a gas oscillation with a shock
wave in the case of strong excitation. The boundary layer on the wall of resonator is resolved with
enough accuracy. We determine the three-dimensional velocity field of acoustic streaming by a
time-average of oscillating mass flux density vector both in the inside and outside of the boundary
layer.
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1. Introduction

Gas oscillations at resonance states in systems of gas and (rigid) resonator are large amplitude,
leading to the emergence of nonlinear phenomena, if the frequency is not too high. One of the
important nonlinear phenomena is acoustic streaming [1, 2, 3, 4, 5], which slowly convey the mass
of the gas, and hence also the momentum and energy. The purpose of this paper is simple: we
want to know how, and from where to where, the mass of gas is conveyed by the streaming motion
in the resonator. Although several contributions have actually been made in theories, experiments,
and simulations [6, 7, 8, 9, 10, 11], they are limited to two-dimensional or axisymmetric flows. We
therefore perform large-scale three-dimensional computations of unsteady motions of compressible
thermo-viscous fluid in a resonator of square cross section.

2. Formulation of problem

A resonator of length L with a uniform square cross section of side a is filled with an ideal gas
with specific heat ratio γ. We consider the gas oscillation of the fundamental resonance mode with
frequency c0/2L (c0 is the speed of sound in an initial undisturbed gas), driven by a sinusoidal shaking
of resonator in its axial direction (see Fig. 1(a)). The motion of the gas in the resonator is determined
as a solution of initial and boundary value problem of the system of compressible Navier–Stokes
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equations with external force terms:
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vi = 0, ρ = 1, T = 1, p = γ−1 everywhere at t = 0, (4)

vi = 0 and T = 1 on the wall of the resonator for t � 0, (5)

where t is the time normalized by L/c0π, xi is the ith component of space coordinates normalized by
L/π, ρ is the gas density normalized by ρ0, vi is the ith component of the gas velocity normalized
by c0, T is the gas temperature normalized by T0, p = ρT/γ is the normalized gas pressure, E =
(1/2)ρv2i +p/(γ−1) is the normalized total energy per unit volume of the gas (the subscript 0 denotes
the initial undisturbed state). The nondimensional parameters, Ma, Re, and Pr, are defined by

Ma =
U

c0
, Re =

ρ0c
2
0

μω
, Pr =

μcp
λ

, (6)

where U is the maximum speed of sinusoidal motion of resonator, μ is the viscosity coefficient, λ
is the thermal conductivity coefficient, cp is the specific heat at constant pressure per unit mass, and
ω = c0π/L is the angular frequency of the oscillation. We assume μ and λ are constants and the bulk
viscosity coefficient is zero.
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Figure 1: (a) Schematic of the model. (b) Computational region is a quarter of the resonator.

3. Result

The initial and boundary value problem presented in the previous section is solved numerically
by using the second-order central-difference in space and a three-stage Runge–Kutta method for ad-
vancing in time, without introducing artificial viscosity.

Only a quarter part of resonator (0 � x1 � π, 0 � x2, x3 � πa/2L) is computed on the as-
sumption of symmetry as shown in Fig. 1(b). Asymmetric streaming motions in resonators have been
reported by several authors not only in experiments but simulations [12, 13]. In the present paper,
however, we treat rather small Re (≈ 2000), and hence we expect the symmetry of the streaming
motions with respect to the central axis of the resonator (x2 = x3 = πa/2L).

We here present the simulation result in the case of Ma = 0.03, Re = 2000, and a/L = 1/6. The
computational region, a quarter of the resonator, is discretized with a uniform mesh of 1600× 200×
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Figure 2: Wave profiles for 200π � t � 202π in the case of Ma = 0.03, Re = 2000, and a/L = 1/6.
(a) Normalized pressure variation from the reference pressure. (b) Normalized temperature variation
from the reference temperature. (c) Normalized velocity.

200; then the mesh size in the x1-direction Δx1 ≈ 0.09/
√
Re and that normal to the central axis is

Δx2 = Δx3 ≈ 0.06/
√
Re, which have been found to be sufficient for the resolution of boundary

layer by our preliminary computations. The time step is Δt = 0.000314.
Figure 2 shows typical wave profiles on the central axis in one oscillation cycle 200π � t � 202π,

in the time range of which the wave motion is almost time periodic with period 2π. The amplitude
of gas oscillation reaches almost 5×Ma and the profile is distorted by the nonlinear effect, although
the shock wave is not formed. If at least one of three parameters (Ma,Re, a/L) is increased, the
nonlinear effect is enhanced and the shock wave will appear. The temperature profiles in Fig. 2(b)
displays the steep gradient in the boundary layer. Our computation well resolves the steep gradient
thanks to the fine mesh.

The velocity of acoustic streaming motion, c0Vi, is defined by the time average of mass flux
density vector divided by the reference density, i.e.,

Vi(x, t) =
1

tave

∫ t+tave

t

ρ(x, τ)vi(x, τ) dτ (7)

where tave is a nondimensional arbitrary average time. In experiments, a time range sufficiently large
compared with the acoustic period 2L/c0 is chosen for tave, while in numerical simulations tave = 2π
is often used.

In Fig. 3, we show the streaming velocity field (V1, V2) in the x1x2-plane at t = 200π and tave =
2π. The figures are enlarged in the x2-direction so that one can distinguish the vortices inside and
outside the boundary layer, which is a typical vortex structure in Rayleigh streaming [1]. In the time
range 200π � t � 202π, we confirmed that the time average of the first term in the left-hand side of
Eq. (1) vanishes (numerically O(10−6)), which means that the streaming velocity field is divergence
free. Incidentally, the time average of gas velocity vi is not divergence free, and this is the reason why
the time average of gas velocity vi is not used for the definition of streaming velocity. The difference
between Figs. 3(a) and 3(b) proves that the streaming motion is a three-dimensional flow.
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Figure 3: Streaming velocity field in the x1x2-plane in the case of Ma = 0.03, Re = 2000, and
a/L = 1/6. (a) A symmetry plane at x3 = πa/2L. (b) A plane at x3 = πa/4L.

4. Concluding remark

The numerical solution of the nonlinear resonant gas oscillation in the resonator of square cross
section is obtained by a large-scale three-dimensional computation. The three-dimensional character
of streaming motion will be clarified through the detailed investigation of the numerical solution,
which will be reported in a forthcoming paper.

In concluding, we make a comment on the time-periodicity of the numerical solution. We usually
expect that the system of resonant oscillation will reach the time-periodic state ultimately. If the time-
periodic state is realized, the time averages of the first terms in the left-hand sides of Eqs. (1)–(3)
should all vanish, because the time average of derivative of periodic function is zero. In the case
shown above, we confirmed that the density ρ is almost time periodic at t = 200π and hence the
streaming velocity is divergence free at that time. However, the internal energy (i.e., temperature)
inside the boundary layer cannot be regarded as a time-periodic function at t = 200π. That is, the
establishment of time-periodic energy flux (including heat flux) requires a longer time compared with
the mass flux, i.e., acoustic streaming.

REFERENCES

1. Lord Rayleigh, Theory of Sound, Dover, New York (1945).

2. Westervelt, P. L., The theory of steady rotational flow generated by sound field, J. Acoust. Soc. Am., 25,
60–67, (1953).

3. Nyborg, W., Acoustic streaming due to attenuated plane wave, J. Acoust. Soc. Am., 25, 68–75, (1953).

4. Rudenko, O. V. and Soluyan, S. I., Theoretical Foundations of Nonlinear Acoustics, Consultant Bureau,
New York (1977).

5. Lighthill, M. J., Acoustic streaming, J. Sound Vib., 61, 391–418, (1978).

6. Vainshtein, P., Rayleigh streaming at large Reynolds number and its effect on shear flow, J. Fluid Mech.,
285, 249–264, (1995).

7. Yano, T., Turbulent acoustic streaming excited by resonant gas oscillation with periodic shock waves in a
closed tube, J. Acoust. Soc. Am., 106, L7–L12, (1999).

4 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

8. Hamilton, M. F., Ilinskii, Y. A. and Zabolotskaya, E. A., Acoustic streaming generated by standing waves
in two-dimensional channels of arbitrary width, J. Acoust. Soc. Am., 113, 153–160, (2003).

9. Thompson, W. W., Atchley, A. A. and Maccarone, M. J., Influences of a temperature gradient and fluid
inertia on acoustic streaming in a standing wave, J. Acoust. Soc. Am. 117, 1839–1849, (2004).

10. Marx, D. and Blanc-Benon, P., Computation of the mean velocity field above a stack plate in a thermoa-
coustic refrigerator, C. R. Mecanique, 332, 867–874, (2004).

11. Daru, V., Baltean-Carlès, D., Weisman, C., Debesse P., and Gandikota, G., Two-dimensional numerical
simulations of nonlinear acoustic streaming in standing waves, Wave Motion, 50, 955–963, (2013).

12. Merkli, P. and Thomann, H., Thermoacoustic effects in a resonance tube, J. Fluid Mech., 70, 161–177,
(1975).

13. Yano, T., Numerical study of high Reynolds number acoustic streaming in resonators, INNOVATIONS IN
NONLINEAR ACOUSTICS: AIP Conference Proceedings, 838, 379–386, (2006).

ICSV24, London, 23-27 July 2017 5


	Introduction
	Formulation of problem
	Result
	Concluding remark

