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It is customary to analyse the directional stability of'ships and

submarines by examining the motion following a disturbance from a

straight line reference motion. The equations of motion are .

expressed in terms of body axes moving with the ship, and provided

the hydrodynamic forces due tothe disturbance can also be expressed

in these terms it is a simple matter to establish stability criteria.

The general force expresions are very complicated, but where small'

disturbances are concerned considerable simplification is possible.

Taylor's Theorem is usually invoked so as to allow the sway force

A! (for example) due to the disturbance to be written as
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with similar expressions for flu} etc.

Yv Y‘.’ Yv etc will be referred to as the 'steady state_derivatives' ,

and for a given model are dependent only on the axial speed6.

The next step is usually to discard terms in ii and above on the

grounds that they are insignificant if the motion is 'slow'. The

resulting expression NV} = va + Iii} (h) is found tobe a good

description of the forces in many ship motions. Xv and Y6 are

comonly referred to as 'slow motion derivatives' and their measure- ‘

ment is the object of much tank testing. The object of this paper

is to examine how‘Yv and Y6 are measured by oscillatory tests.

The device used is known as the Planar Motion Mechanism (PM for

short). fully described in [1:] and [2:] . In essence the PM

imposes a sinusoidal oscillation on to the straight reference path

of a model which is being towed. The oscillation may be one of

pure sway or pure yawing. The instrumentation measures the forces

applied to the model by the PM and carries out an ‘on line'



   

  Fourier analysis to separate the force into components ‘in phase‘
and 'quadrature' with the displacement. Since the inertia forces
are known, thePMM is, in effect, a device for measuring the
'in phase' and 'quadrature' components of hydrodynamic force.
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Consider. for example, an oscillatory test in pure sway. If the
displacement is yo sin wt and the hydrodynamic sway force is

A sin mt + B cos wt, ........... (5)

then the PMM measures A and B. Now according to equations (1) and
(h) this force is A! - Y{v} I va + Y&v since u I p I r I 0.

Also v a v cos wt where v = y u. and e I v w sinwt.
0 o o 0

Hence AY - Y v cos mt - Y. v msin mt.
v o v 0

Hence A = - Y. v w and B= Y v .................... (6)
v o v 0

Thus if A/vo and B/vo are plotted against u, we expect the former

to be a straight line through the origin of slope - ‘1‘.' and the
latter a constant of value Yv.

In practice this is not so, although it is almost true of l"} .
We conclude that while equation (h) may be adequate with
regard to actual ship motions, it is not adequate at the higher

frequencies of a PMM experiment.

Bishop and Parkinson [3] therefore take the higher derivatives into

account by the method of 'oscillatory coefficients'. Inserting a

sinusoidal oscillation as before into equation (2) gives

A! = Y{v) = Yv vo cos mt - Y6 vo u Sln wt 3va + Yfiv ...... (T)

where Y = Y ~ wz Y“ + u“ Y v. - .... )
." " " ) (a)

_ 2‘ Y‘.’=Y‘.’ a: Y“. 1* ................)

iv and9% are 'oscillatory coefficients' and by comparison with

equation (5) it is seen that iv = B/vo and i9= - A/vo w ...... (9)

In other words, the PMM measures not Yv andY6, but IV and Yfi .

Moreover we know the form of Yv and YQ in terms of u. and see that

‘ ‘ . - I - . 2
as w + o, Yv + Yv Yi + Y6 . By plotting IV and Y6 against u the

result should be almost a straight line, whose intercept at

m I 0 gives the values ofYv and Y6 precisely. This method is a

considerable improvement, but the theory is open to the objection

that it still does not take into account the past history of the

motion - an effect which is known to exist.

  



  

Recently this limitation has been removed by an approach based on

Volterra functions E}:]. In this paper an alternative approach

is presented based on expressing Y(v}as the solution of the

differential equation

11 m
d d dv d v

Y(v) + a1 dt Y(v) + ... an dtn YIv} = bov + b1 at + ... bm den (10)

(It cannot be taken for granted that the effects of past history

can be represented in this way but there is some evidence that

it can.) We now seek to relate the 'a' and 'b' coefficients to.

those already discussed. First consider a reference motion on

which is superposed a constant sway -

velocity v° which develops rapidly

at time t = 0. Now according ‘ , Eqn (2)

to equation (2) NV) will, after a #—

brief transient. take the value
Yv v0. According to equation (10)

A!

there will be a delay in the

development of a steady state, but

the force must eventually reach the

same value. Since the steady state

solution of equation (10) is
Y{v} 5 b0 vo we have the relation

0 t
Yv = to ...................... (11)

 

Now consider a reference motion on which is superposed a constant

acceleration in sway v0, which develops rapidly at time t = 0.

According to equation (2) Y(v} will,
after a brief transient, take the

value Yv vet + Ii 9° . According to

AY

equation (10) there will be a delay
in the development of the force, but

it must eventually beassymptotic

to the same value. The particular
solution of equation (10) for tae w is

Y(v) I b° vat + (b1 - a1 b0) v0 and

since we have established that
Yv = b0, we obtain the relation_

 

. - ............ tYV-(b1 a1bo) (12) o 1

Relations for the higher derivatives can be obtained in like

manner and can be expressed as Y = cj ... (13), where the

Isuffices v1 v2 etc denote v 6 etc and c5 is the determinant

b 1 0 O . . O
0

b1 a1 1 O . . O

_ J'( 1) b2 a2 a1 1 .. o

  



 

Finally consider a reference motion on which is(su§erposed a
10steady sinusoidal oscillation. Since equation represents

a linear system its asymptotic response to a sinusoidal input,

v 8 v0 cos mt is also sinusoidal. and is A sin at + 3 cos mt where

 

a} B - a 81 o B + a1 81

A.——°—°—...v 3. ° ° .vo (m
cl2+612m2 0- az,uzuz
o o 1

ll .. ._..)no - (1 - a2 u2_+ ah m“ - ...) 0‘ l=(a1 - a3 m2 + a5 u

(15)

3° f (be - b u2 + bu m“ -...) 31 '(b1 - b m2 + b u“ -...)
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For low frequencies A and B can be expressed as polynomials in w

and the c determinants, giving the following results.

A = - (c1 - c3 wz + c5 m“_...) mvo

(16)
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Hence from equations (13) and (8)

A--(Y.-u2\'
V

v + ...) mvo = - Y.v u
V0

(17)

_ 2 'B = (Yv _w YV + ...) v0 3 va0

v
v
v
a

These equations are identical with equations (9) and it follows
that the procedure-there described for obtaining the slow motion
derivatives Yv and Y0 is valid in this more general case also.
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