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ABSTRACT

We have progressed in our understanding of wave propagation in random media to the point

where theoretical predictions of the fluctuations in sound waves that have passed through a

medium with a known autocorrelation function are quite accurate. This paper is a brief review of

that progress in the context of ocean acoustic scattering. Analytic predictions from 4"I moment

theory of the range-depth-time phase and intensity fluctuations are shown to agree well with

measurements of the complex amplitude of sound waves that have propagated through ocean

' regions where the index of refraction statistics are well known. The emphasis is onthe require-

ment to understand fully the statistics of the ocean medium. Models of the acoustic index of

refraction correlations that result from oceanic tides, internal waves, and finestructure processes

will be discussed. Comparison of measured and predicted acoustic fluctuations will be presented

to indicate the level of our understanding. Our knowledge of the scattering processes allows us to

consider the problem in an inverse sense. That is, we use the equations of scattering to obtain a

stochastic inverse from acoustic data. Examples will be given from the Mid—Ocean Acoustic

Transmission Experiment, MATE, of both the forward problem and the inverse problem. Models

of the oceanic internal wave, finestructure and tidal processes obtained from the measured acous-

tic fluctuations, are compared with those measured. A discussion of the future expectations from

stochastic inverse analysis will be given.

INTRODUCTION

Our knowledge‘of wave propagation in random media has advanced significantly in recent

years. For the case of sound propagation in the volume of the ocean, a significant step was the

recognition by Uscinski (1980,1982) that multiple scattering theory was required to account for

the large intensity fluctuations observed at mid—ranges. The measurements used in testing the

theory were made during the 1971 Cobb Seamount aeoustic transmission experiment. In that

experiment 4 and 8 kHz pulsed tones were recorded after traversing an 18 km fixed refracted path

(Ewart 1976). Other investigators before and after Uscinski’s work invoked the Rytov approxi-

mation to explain the Cobb results even though the measured scintillation indices were above one,

and the log intensities at 4 and 8 kHz did not exhibit Rytov scaling. This is a testament to the

requirement that theory not proceed independently of experiment. Application of multiple scatter

4"I moment theory to the intensity fluctuations observed in the Cobb experiment and in MATE

(1977), made it clear that two major difficulties remained before theory and experiment could

agree. [MATE was carried out at 2,4,8, and 13 kHz in the same location as the Cobb experiment

(Ewart and Reynolds 1984)] The first was the lack of precision in our knowledge of the transverse

correlation function, TCF, of the ocean. The second arose from the fact that the fourth moment

theoretical solutions were evaluated only approximately. See Macaskill (1983) and Uscinski et a!

(1986) for discussion of a more precise evaluation of the basic fourth moment solutions.

In this review I will present an overview of the status of the predictions of the experimental
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results. In doing so I will address the the evolution of our knowledge of the transverse correlation

function based on internal waves and finestructure. Having demonstrated the evolution of our

thinking in the development of realistic ocean models, and showing the rather convincing theory-

experiment comparisons, I will give a review of our use of the acoustic data to obtain the ocean

correlation function as a stochastic inverse. This inverse method is based on a paper by Uscinski
(1986). The forward and the inverse scattering problems are examined using the same data set. I

will thus try to link our understanding of the statistics of the fluctuating ocean index of refraction

field with our understanding of the fluctuating acoustic field. I will then point out areas where an

improved understanding is required, and indicate needed research topics. I will begin with adis-

cussion of the TCF as it is modeled from the processes of internal waves and finestructure.

THE TRANSVERSE OCEAN CORRELATION FUNCTION

In order to predict the variability of acoustic waves propagating in the ocean, we need to

know the full space-time correlation function of the medium, R (5,, n, (2, t), where §,T\,§,1 are the
space and time difference coordinates. We consider propagation in the x direction with 2 as the

depth. The index ofrefraction, n , is usually writtenas a depth dependent deterministic part and a

fluctuating part.

n(x,y,z,t)=l+<nd(z)>+<u2>wn1(x,y,z,r) (1)

Certainly in most ocean cases, <p.2> is a function of depth also. In our case we assume cylindrical

symmetry, and ignore the y dependence in the correlations. We consider ocean regimes where

<uz> can be considered independent of depth (Cobb Seamount at the experiment depth of 1000 m

is such a region). Then,

R(§ICI1)=<nl(i)nl(j)>t

where the i, j refer to different space-time points. We need a few parameters of the medium to

carry the proper normalizations; they are the scattering strength I‘, the scaled range, X, and an

integral horizontal scale, LP, where,

r=k3<u2>L,1Lp,

X = 210288830: range ’and

k L,

LP: jR(§,o,0)d§. (3)

LV is the vertical correlation scale of the index of refraction, and k is the acoustic wavenumber.

In general the space-time correlation function of internal waves in the ocean has been taken to be

separable in the depth and time coordinates. The normalized TCF function needed as input to

theory or numerical experiment is the integral projection of R on a plane transverse to the propa-

gation direction is

pm): jR(§,c.r)d§=L,, gig . (4)

where the assumptions are the standard linear internal wave dispersion relation, and separability
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of the depth lag and time lag correlations. (Henceforth, TCF will refer to the normalized form.)

This allows usto use any of the separable spectral models of linear internal waves. At this point I

will review some ocean experiment specifics before discussing the models of internal waves and

finestructure that we use.

As a critical test of theory, the experiment design was to make simultaneous, independent

measurements of the environmental and acoustic fluctuations. The space—time sound velocity

structure of the transmission path region of MATE was studied using the various sensor systems

depicted in Fig. 1. The moored sensors sampled the depth-time temperature, salinity, and current

structure with 3 moorings located at the comers of a triangle approximately 350 m on a side. The

Self-Propelled Research Vehicle, SPURV, recorded temperature, salinity, and pressure data while

depth cycling on trajectories oriented 45 degrees to the vertical along the outer edges of a box6
km on a side by 100 m depth. This data provides information on the horizontal-vertical spatial

correlations. SPURV was also operated on isobaric trajectories to study horizontal isotropy and
homogeneity. The CTDSV was used to record temperature, salinity, and pressure in two modes. In

the first mode 38 profiles were taken at stations spaced 1/4, 1/2, and 3/4 along the MATE
transmission path to obtain the depth—large scale horizontal correlations. In the other mode the

CTDSV was depth cycled over 1000-1300 m every 20 min for 25 h. This data provides detailed
depth-time correlations. The acoustic raypath spanned a depth range of 1000—1200 in, so our
interest is in the index of refraction correlations in that range.
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Fig. 1. Layout of the MATE oceanographic and acoustic measurement apparatus.
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The extensive oceanographic and acoustic measurements made during MATE allow us to

examine the relationship between the oceanographic variability and the acoustic variability in

considerable detail. To give the reader a feeling for the need to obtain the full space-time descrip—

tion of the acoustic index of refraction field, I have included some of the MATE oceanographic

results presented in the context of a study of internal waves by Levine e: a! (1986). Earlier work

on the so—called finestructure oceanography of MATE is found in Levine and Irish (1981). The

results presented in the following figures are given in spectral form, i.e. the Fourier transform of

Eq. 2. The transformed variables corresponding to g, Q, t are a, [3, f .

Figure 2 shows the mean sound velocity and buoyancy frequency profiles for the MATE site.

The sound velocity is quite linear over the depth range of the transmission path. The buoyancy

frequency is nearly constant in the raypath region, and is exponential in depth; this agrees with the

standard theoretical formulation of internal gravity waves. Two displacement spectra computed

from the 883m and 1273m moored temperature sensors are plotted in Figure 3. The diurnal and

semidiumal tide lines (.042 and .081 cph) stand out at the low frequency end of the internal wave

band with only a small inertial frequency peak (.061 cph). The internal wave band shows a rise at

the inertial frequency, a falloff to the buoyancy frequency (21.0 cph), and a sharp drop at higher

frequencies. The moored velocity spectra for the current meter at 1079m is plotted in Fig. 4

showing both the clockwise and the anticlockwise rotary forms. As expected, the clockwise

spectrum shows the inertial peak to be the strongest with the diurnal and semidiumal peaks

equivalent in the MS+ and MS_ spectra. In both figures the Garrett and Munk (1979) form of the

linear internal wave prediction is shown as a dashed line with the Levine and Irish form shown as

a solid line. The Levine and Irish form will be discussed in more detail subsequently. Figure 5 '

shows the vertical coherence of the displacement field for temperature sensor separations of 1, 25,

and 240 meters.

Determination of the spatial spectrum of the internal wave field was made using data

recorded by SPURV and the CTD probe. Figures 6 and 7 show the vertical wavenumber displace-

ment spectra computed from operations of SPURV on isobaric trajectories and data taken with the

C11) operated in a yo—yo fashion. In Fig 6. the horizontal wavenumber spectra computed from the

north and south trajectories of SPURV indicate isotropy. This provides justification for dropping

the y dependence in Eq. 2. The solid line from 4.0x10'4 to 10‘2 cpm is the Levine and Irish

theoretical form. The vertical wavenumber spectra plotted in the two curves in Fig. 7 represent

estimates computed from the depth ranges indicated.

There are many more projections of the full spectral form that can be derived from the

MATE data. See Levine and Irish (1981), Ewart and Reynolds (1984), or Levine et al (1986) for

thorough discussions. We believe that the data provide an adequate test of linear internal wave

models. I will present only the spectral form of the model and the forms of Eqs. 3 and 4 here.

The Levine and Irish spectral model is

31132 f11/2 fAim

2032-5082 MAW—HEW
where 0'2 is the internal wave displacement variance, and ([31, [32, fI, and fN) are the lower and

upper vertical wavenumber cutoffs and the inertial and the buoyancy frequencies respectively.

mm = 02 (5)

Proc.l.0.A. Vol 6 Part 5 (1986) 1 Z 8
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Fig. 2. MATE Sound velocity and Buoyancy Frequency profiles.
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Fig. 3. Displacement spectra from temperature mooring 2.
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Fig. 4. Rotary velocity spectra (Diurnal, S 1, Semidiumal,

M 2, and Inertial, fI frequencies shown). '
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The integral scale, LP, and the TCF derived from the internal wave model are,

34—‘1n ' 3 f3!2(fz __ f2)ll2 '

LP = 3: it! I (6)
£13. I i

l '52 fl fan

L f_N Ba cosg21tfifiz] d f” cosg21tf 8:! d
P n J B3 B I; fsnocz _ f,2)m f

pm(52 ,5!) = 1'31 IT— (7)

Eli I 1L
1 [52 fl fm

Equations 6 and 7 are left in integral form; in practice the integrals are done numerically. The
extra terms compared to Eq. 5 arise from the dispersion relation. The MATE data appeals to sup-
port f '1'7 in the denominator as opposed to the Levine and Irish model form of f ‘3”; we have
shown this to be an insignificant difference for the 4"“ moment comparisons. See Ewart and Rey-
nolds (1984). The values of the lower and upper wavenumber cutoffs for MATE are
Bl = 6.9x10‘4m and B; = 0.1m respectively; the inertial frequency, f], is 1.66x10‘s Hz, and the

buoyancy frequency is given by

Proc.l.O.A. Vol 3 Part5 (1986) 1 1 3
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_ de 1/:

7.34x10" e '3‘” Hz. (8)

One difficulty in fitting linear internal wave models to the MATE oceanographic data set is

the fact that only half of the displacement variance in the vertical wavenumber spectra can be

explained by the standard models. The remaining variance has been termed finestructure, and is

basically that component of the fluctuations without a wavelike dispersion relationship. The origin

of finestructure is uncertain, and many mechanisms have been postulated. As we shall see subse-

quently, finestructure had to be included with linear internal waves before theoretical predictions

of the acoustic intensity fluctuations measured during MATE were in substantial agreement. We

have chosen to use a form for the finestructure correlations that is separable and includes the verti-

cal and horizontal coordinate lags and the time lags. We expand on the form given by Levine and

Irish (1981), and write the correlation function of finestructure as

- a + a“ HRps(§.t,r)=e ‘" L" e '° (9)
The assumptions are that the vertical con‘elation scale of finestructure is larger than the internal

wave displacement. This is supported by observation in the MATE region. This means that the

finestructure statistics can be considered independent of those of internal waves. The correlations
due to internal waves are controlled by the dispersion relation; we assume that finestructure does

not obey a dispersion relation and that the correlations are separable. The spectral form of Eq. 9 is

1 1 1
F (a, , )=— . hereF5 Bf N0050fo|1+a_2+firfi Hg, w

0‘3 [53 f3

a0 = (27tL 'H)", [30 = (21:1. 3,)“, and f o =(2mor1 , and (10)

the primes differentiate between internal waves and finestructure. The TCF for finestructure from
Eqs. 4 and 9 is,

. +1) -
pps(§.t)=2Z§—L'HK1(I§—>e '° . (11)

v V

, where K 1 is the K 1 Bessel function. Note that,

lim g , g
-— 2 L K = 0, 12C_)0[ UV 1! 1(L,V)] ( )

and if we setL'p = ’H, then

«i)
pm; 1) =L'p—§—Ki<—§—) e ‘° . (13)

L V L v

The assumption that Up = ’1, remains to be verified for finestructure; L}! = 2L” for internal

waves. The chosen spectral models for internal waves and finestructure provide the required 3;, 1:

dependence, and these fomis are well fit by the measured oceanographic data. The inclusion of

1 1 4 Proc.|.O.A. Vol 8 Parts (1986)   
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the time dependence is required in the stochastic formulation. As we will see in the section on the
inverse method, the value of 10 for finestructure is longer than the longest internal wave period.
Physically, it indicates the slow decay of the non wave-like processes. Levine (1979) referred to
this as "melt " finestructure, as opposed to the high wavenumber finestructure which is con-
sidered to be passive and "frozen". The value of <tt2> associated with the "frozen" finestructure is
two orders of magnitude below that of internal waves or "melted" finestructure. Hence, we have
ignored it for the purposes of acoustic fluctuation predictions. See Ewart et a! (1983).

It is now possible to write the combination of internal waves and finestructure as-LP times
the internal wave TCF plus L'p times the finestructure TCF. This form can be conveniently used
as input to the theoretical solutions of the fourth moment equation to predict the MATE acoustic
intensity correlations. We now direct our attention to comparisons of the measured and predicted
intensity fluctuations.

EXPERIMENTS COMPARED WITH THEORY - THE FORWARD PROBLEM

It is not my intent to present a summary of the theory, but rather to show the evolution of our suc-
cess at predicting the MATE fluctuations. I will concentrate in this section on the intensity corre-
lations of the scattered field, because predictions of the lower order moments compare well with
measurements. If one examines the predictions of 4‘" moment theory when multiple scattering
effects are not included, they seriously disagree with observations. See e.g. Desaubies (1978),
Flatte (1983). Multiple scatter theory is discussed extensively by Uscinski in another section of
this conference, and I will present only the results of predictions based on the oceanographic
review in the previous section without a review of the theory. The reader is encouraged to exam-
ine the experiment-theory comparisons in more detail in Ewart et a! (1983), Ewart and Reynolds
(1984), Ewart et a1 (1985), and Uscinski and Ewart (1986).

I will discuss here the multiple scatter predictions of the 2, 4, 8, and 13 kHz MATE intensity
autospectra. The approach we use in the comparisons is to use the experimentally determined
values of I‘, X, Ly, LP, ’v, ’p, B1, [32, fI, andfN together with the analytic forms of the
TCF’s. The theory has evolved in two incarnations. The first, Uscinski er a! (1983) is termed a
"zeroeth" order evaluation of an "exact" integral form. The second, Macaskill (1983), and Uscin-
ski et a1 (1986), includes a correction to the zeroeth order evaluation, and has been termed a "first
order" evaluation. I will refer to these solutions as m "(0) and m "(1).

The MATE intensity autospectra, (DI/(1,0 ) are plotted in Fig. 8 with 4, 8, and 13 kHz offset
from 2 kHz by successive decades. Four different theoretical predictions are shown based on
m "(0). The predictions differ only in the form of Eq. 5 used to obtain the TCF. The four models

are indicated on the figure with differing values of P, where f '(P ‘1) is the form of the time fre-
quency spectrum. The symbol "LI" refers to the model presented in the previous section,
refers to the Desaubies (1976) and "GM" refers to the Garrett and Munk (1979) models. The
predictions have approximately the correct spectral form, but the scintillation indices (integral of
the normalized intensity autospectra), 5,2, fall short in all cases. Predictions based on the full
internal wave and finestructure models, Eqs. 7 and 13 are shown in Figure 9. The differences in
the experimental curves lotted in Figs. 8 and 9 is due to differing techniques of spectral estima-
tion for f <f,. The m” 0’ prediction in Fig. 9 is an improvement over the prediction for internal

Proc.l.O.A.Vol8Pan5(1986) 1 1 5   
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waves only, but the m "(1) predictions are very close to the experimental curve. Table 1 is a com-

pilation of S12 for the three predictions.

Table l. MATE Predicted and Meaéured Scintillation Indices

Freq. mwl") - rw ' mww) - 1w and FS mm“) - 1w and FS MATE
2.033 kHz 0.26 ' 0.56 . 0.69 0.73
4.167 " 0.51 0.33 ' 1.21 1.13
8.333 " 0.33 1.17 1.75 1.95
12.5 " 1.09 1.27 1.80 1.85

Comparison of columns 3 and 4 of Table 1 indicates quite good agreement. One of the difficulties

in inferring too much from this success is the nature of the multiple scattering process. When 1‘)!

is well above one as it is for most ocean scattering conditions, the acoustic field "forgets" the oce-

anic field as it propagates. The form of the scattering is thus dominated more by the value of I‘X

than it is by the detailed form of the correlation function. This indicates that we need to

concentrate more on the lower moments of the acoustic field before we can be certain of the ana-
lytic forms of the TCF. Clearly, both internal waves and finestructure models must be included. It
is clear from Eq. 4 that the vertical correlations of the index of refraction are equally important.
Lacking data on the depth dependence of the acoustic field, we have used numerical techniques to
test the z dependence in the 4”l moment predictions.

The multiple scattering theory discussed above predicts d>,,<l>(§, f ). In addition to the

agreement of multiple scattering theory with ocean experiment results, the robust nature of the

predictions is also evident from tests of the theory with numerical experiments. Macaskill and
Ewart (1984) applied numerical parabolic equation methods to test the Q dependence of the
theories. In that work the statistical ocean behavior is simulated with Monte-Carlo methods, and

the wavefield is propagated through the simulated environment using the split-step method of

Tappert and Hardin (1974). The output is many realizations of the wavefield in transverse coordi~

hate and range for given values of F, X, and the TCF. From this numerical data 0,,<I>(§) was
estimated. The agreement of theory with the numerical experiment results is very good. See
Macaskill and Ewart and Uscinski er al (1986).

Thus, 4"l moment theory and experiment are in accord for wave propagation in random
media where the parabolic approximation holds. The large values of F,X appropriate to the
ocean indicate that multiple scatter theory must be used. This implies an inability to confirm
specific models of the TCF, and we sought other methods of testing. In the next section I address
preliminary results from a method that uses the measured acoustic fields of MATE to test the
ocean models of tides, internal waves and finestructure. ‘

 

  PROGRESS ON THE STOCHASTIC INVERSE PROBLEM

Uscinski (1986) provides a theoretical basis for comparing ocean models with the measured
phase and complex amplitude correlations. I will only summarize the theory for the phase correla~
lions, and present some preliminary results obtained from the MATE acoustic data. Uscinski

(1977) gives an expression for the two-point phase correlations of a wave propagating in a random

117  Proc.l.O.A. Vol 8 Part 5 (1936)
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media. In the notation used here, the predicted phase correlations as a function of C, and, 1: are '
written

GMG) WIWC‘) _ 61:5(0 “043(1)

      

R ( ,c)=I‘X +b , 14
¢ q 91w (0) Wlw(0) ' 913(0) WFs(0) ( )

2 L,
where b = (“55> ” ‘05)

<lllw> LP

gives the ratio of the contributions of internal waves to those of finestructure in the variance of
acoustic refractive index fluctuations. The space-time autocorrelatjon function of the complex
acoustic amplitude measured at two receivers is given by the solution of the parabolic second
moment equation. Its use in an inverse sense is written by Uscinski in a similar fashion. In the
case of the phase and complex amplitude correlations it is necessary to consider the effects of the
tides as well as internal waves and finestructure. As the MATE acoustics data was measured as a
time series, I will drop the Q dependence in what follows.

- Uscinski assumes a simple harmonic tide, and shows that the tides can be included in Eq. 14
as

   

Rut) _ rx we) who) A57) 1 5132 i
‘kz —F [Wm/(o) +b WFSw) ] +—cos(21t )+ 2 cos(27t ), (16)-

2 Tso To

where SD and D refer to the semidiumal and diurnal tides. The inverse is computed by solving
the minimization problem

minimize

I‘X , b , ASD , AD

where R ¢(1:) is the measured phase correlation function. The advantage of dividing the equation

by k2 is that the acoustic frequency dependence is removed to first order. The result of solving

Eq. 17 for the parameters of R¢(‘r) using the MATE 2 kHz phase data is shown in Figure 10. The

minimization was carried out using a technique discussed in Sorensen (1982). The internal wave
and finestructure models used were Eqs. 7 and 13 with C set to zero. The value of 1:0 correspond-

ing to the minimum residual (27h) was found by solving the problem in Eq. 17 for many fixed

values. A plot of the individual correlation functions in Figure 11 shows the relationship between
the various functional forms. Different expressions for way“) were tried with little differences in

the residuals. The inverse using only time measurements is limited. For those readers familiar
with ocean internal wave studies, we canot obtain the energy and bandwidth parameters using
WM (1:) alone. The parameters (e.g. E and j ‘ in the Garrett and Munk formulation) arise in combi-

nation in I‘X. Both time and depth measurements of the acoustic field are required to obtain the

parameters independently.

The results are encouraging in that the values of TX and b from the minimization are rea-
sonably close to those observed (9.6 versus 14, and 1.1 versus 1.0). The ratio of the semidiumal

tide amplitude to that of the diurnal tide is close to the ratio reported in Larson and Irish (1975) for

tides in the Cobb Seamount region. (The method gives only the amplitudes of the tidal current

components along the acoustic ray.)

[13 W) —R¢(t)]2, (17)
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The difficulty in obtaining the inverse using the correlation functions arises from the fact that

the estimates of the correlation function at different lags are themselves correlated. Because of
the oscillatory nature of the tidal and internal wave correlations, there is not an objective criteria

for choosing how many lags to use in the inverse. If one wishes to use a weighted minimization

technique, it is difficult to assign the weights in view of the fact that the errors in the estimates are

also correlated. These problems can be alleviated by reformulating the problem in the frequency

domain where the spectral estimates are uncorrelated. This has been completed, and early results
are encouraging.

SUMMARY

I have tried to give the reader a feeling for the complexity of the problem one faces when try-

ing to reconcile acoustic scattering theory with experiment. Ultimately, a clearer picture of the

oceanography-acoustic relationship will emerge when the forward and inverse methods have been

utilized fully. Oceanographers, for their part, are making the world more complex by introducing

non-separable internal wave models. In our work so far, we have ignored the mean sound speed

profile. Curving raypaths modify the effective TCF due to the angle of the wavefront to the lay-

ered ocean statistics. Ray effects are negligible at MATE because of the shallow ray angle and

the linear sound speed profile. This is not true for most ocean acoustic scattering conditions. Both

the 4"“ moment theory and the inverse theory will require modification to include those effects.

It is clear that we need to utilize data sets such as MATE to test the ocean models to the

extent possible. The MATE acoustics data was recorded for only a single separation in the verti-

cal and a single separation in the horizontal. Before we can use Eq. 16 and its coqnterpart for the
complex amplitude correlations fully, we need to have a data set where the R¢(§, t) can be

obtained over wide ranges of Q and ‘5. Such data will be provided by the 1985 AIWEX Acoustic
Transmission Experiment where simultaneous oceanographic and acoustic measurements were
made in the Beaufort sea. Ray effects will have to be considered in that case.

We have come a long way from the use ofhomogeneous isotropic turbulence to model the

ocean medium. The lesson learned is that understanding the processes of acoustic scattering can-
not proceed without a thorough understanding of the medium. This gives a strong indication of the
need to conduct oceanic scattering experiments simultaneously with a complete space—time sam-

pling of the oceanography. Success in the use of stochastic inverse methods indicates that the
converse may also be true.
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