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ABSTRACT

Hhen the radiation from a baffled piston is sufficiently intense,
A number of novel and perhaps useful phenomena related to harmonic
generation appear, as a result of nonlinear interactions in the sound
field. This paper reports some recent studies of several of the more
prominent and interesting of these phenomena; in particular. shock
formation, finite amplitude attenuation and the propagation and
directivity of harmonic radiations. Theory pertinent to the delineation
of acoustic fields is given, along with the results of several experi-
ments done in a fresh water lake.

Introduction
One of the most popular problems in acoustics is the radiarion

of sound from a piston source. The importance of this problem has to
do with its relevance to practical applications such as the radiation
of sound from loud speakers and from sonar transducers. Up to the
present time. textbook descriptions of the piston problem have
invariably treated only the linear or first order field. This has been
the case, despite the fact that significant work related to second
order effects in traveling waves generated by piston sources dates
back to Earnshaw**(1860) .

Many recent investigations have improved our understanding of
not only the second order field but also its effect on the primary
radiation. Notable among these investigations is the experimental
work of Ryan, ultlch and Beyer2(l961).whieh treated the distortion

 

t
Hr. Blankenagel's contribution was made while he was a visiting scientist
at Applied Research laboratories.

“For a history of the subject, see reference 1.
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of rf pulses in waterl The results of their measurements. Ede in the

nearfield of a quartz projector with a relatively large hydrophone,
were compared to the perturbation theoryof Keck and Beyer3(1960) The
growth of harmonics was found to increase with range in agreement with

plane wave theory. Gould. Smith. Hilliams and Ryan“ (1965) extended
this work in some nearfield measurements of the fundamental. second
and third harmonics, using a tiny probe hydrophone. They found a
considerable fine structure in both the angular and the axial response

for all components. The Brown University group has also studied the

nearfield theoretically; see papers by lngenlto, Williams, and Roger-a.s

Although the nearfield of the piston is an important region.
it is quite often not as important as the farfield region. This is
especially true in systems of practical significance in sonar. The

- farfie ld region of the piston is characterized by spherical divergence
and Bessel directivity. Although muchwork has been done on spherical

waves of finite amplitude,5'12 very little has been done in the area
of ncnunifonn spherical waves associated with radiations from piston
transducers.

In the present paper. we attempt a survey of the piston problem
with emphasis on a more extensive delineation of several second order

entities arising from farfield interaction. The classic problem of

distortion and shock formation is the first to be examined. Certain
approximate modifications to weak shock theory are made that enable

its reanlts to be extended to problems involving long range propagation,
where ordinary exponential damping eventually dominates. These modi-

fications will be compared to the results of several hydraacouatic

experiments on the propagation and directivity of spherical waves of
finite amplitude.

Weak Shock ‘l'heorx .
The key steps in the progressive distortion and eventual for-

mation of shock waves are sketched in Fig. 1. It is assumed that we
startwima high amplitude sine wave at some range to, which may be

taken as the range of spherical divergence. As is well known. the
dependence of the signal speed on location within the waveform causes

a cumulative distortion until a shock wave is formed at a range r.
At this range, the amplitude of the fundamntal is reduced by 1 dB
as a result of the distortion that has taken place. If the wave is of
sufficient amplitude. it attains a mature sawtooth shape at
the range I". At this range, the amplitude of the fundamental is reduced
by 6 dB. Finally, dissipation reduces the shock wave to an "old age"

waveform thAt is basically sinusoidal. The waveforms shown in this
figure were constructed by use of weak shock theory and are applicable
to spherical waves of finite amplitude. For example, successive

positions of points on the waveform were determined from

t=Q+ -— (la)

where

 

L, si lb)v t°+Bur7r at. 2 ’ (

ii = sin-1(u/uo)

and s
8 1+“ .
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llere on is the small-signal sound speed and BIA is the parameter of

mlinearity. when shocks form, u is replaced in Eq. (lb) by

(u.+ub)/2, where ua is the value of u justahead of the shock while~

uh is the value of u justbehind the shock. 111a formulas for 1'- and r

shown in Figure l were also derived from the weak shock solution (see

below). The symbols are defined as follws:

u
s a c—c , the acoustic Phch number, on being

a the peak particle velocity at rero, and

k a the wavenumber of the fundamental component, 2T" .

r = the range for which the rate of finite

maplitude attenuation is equal to that of

.. snail-signal attenuation for the fundamental

and
a a small signal attenuation coefficient.

In the frequency domain. the weak shock solution may be expressed

in terms of a Fourier series as follows:13

r
P : P4170) g1 aninnlwt-kk-ro) .' (2)

where .

Po :- “ocouo ' and

2 2 "
su=n-—"wb +5 cosnfl-asinhdi .

min

1 - luh =(a)[j° ‘(a)lu(a-n .

t in“ - Cub .

r
o - Bekroh to

For jo-l(al2 read, "the quantity whose zero order spherical Bessel

function e 5.." The symbol U(-) stands for the unit step functioni

The frequenq domain solution allows the calculation of the amplitudes

of the various frequency components. [Similar solutions for various

sementa of the prop ation.cutve have been obtained by Naugol'nykh,

Soluyan. and Khokhlov (19631] The Bn‘s in the weak shock solution
are the coefficients of the harmonic components of the waveform. "hen

the distortion parameter. aI is less than unity, the B“ areanalogous
to those obtained by Pubini 1' for plane waves in the shock free region.

when a > 3, the limiting forms for lln may be associated with the

sawtooth solution, m is an asymptotic form of the l-‘ayls solution
‘fcr Bek>>a .
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Dissipation Consideration
A difficulty associated with the weak shock solution is that

it is not valid at ranges concomitant with significant small signal
attenuation. Blackstoeku estimated the range of validity of the
weak shock solution by determining the range at which the rates of
finite amplitude andsmall signal attenuation are equal for the funda-
mental component. He can extend this amputation to the nth harmonic
by imposing the condition.

‘dn(r-rm)

- n (rm ) “ed—l . (3)
r-r ‘1 x ' r-r

max max

dank)

dr

 

 

where E is given by the weak shock solution. If the wave is strong
enough gar a mature sawtooth to form. on -= 2/n(l+o), in which case
So. (3) gives

) Bakr
t(n = o ' (6)

max a flask: ‘n'
l o rv I

It should be remarked that extension of the rma criterion to the
nth harmonic is not valid unless the component in question is already
in a state of finite amplitude decay. At ranges shorter than fig?“
the weak shock solution is reasonably valid, at least for the harmonic
component in question. At greater ranges, one must resort to the
Burgers' equation. a nonlinear equation for progressive waves that
includes the effects of viscosity" An exact solution of Burgers‘
equation is known for plane waves. For spherical waves. however, no
complete, uniformly valid solutions are known. On the other hand,
partial solutions valid for certain ranges are knovnr' and some
promising numerical solutions have also been developed and are discussed
elsewhere in these proceedings.

As an alternate approach. we seek to modify weak shock theory
to obtain an approximate formula that will offer a simpler solution
to the problem. We begin by considering the two agencies of dissipation.
i.e.. finite amplitude attenuation and small signal absorption. for the
fundamental component. as shown graphically in Fig. 2. part (a). It
can he seen that finite-amplitude attenuation dominates at ranges

sho ter than the equal-rate range, r83}. At ranges in excess of
r :, small-signal absorption dominates. Since the attenuation rates
of the two agencies are predicted to be the same at r“)? we choose
an approximate Fourier coefficient that is given by weak-shock
theory for ranges shorter than 13g; and makes a smooth transition to

small-signal attenuation at This approach may be generalized.
and the Fourier coefficient for the nth harmonic is given by

AEGIS-k,” 3”} - "(r-'$:)]Bn‘3r‘-k»r) (s) (n)

* ["("'$l)]an(a.._k....;:;) gab-t
n);

*See. for example, Ref. 16.

I“'See, for example. Ref. 9
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Here the uni-Ly”? -. . . 1.8, “99'! .

transition“ m' one-Iorm‘of adfltio :‘to"tfle other: ‘lhat the transi-

tion is smooth is evident from the plot for the fundamental com-

ponent shown in Fig. 2, part (b).

’I‘WE ~71 KYLE sea-.5

Propagation Measurements

The extent to which this model may be.va1id is demonstrated by .

a compariaoailvith'imxpefmntal‘ results shown in Na. 3-

.A baffled,,.lead:;ircpnate. lead-titanate piston, 3 inches in diameter,

was placed'dt aldepth' ofhlo ft in a fresh water lake and driven at a

source level of 127 dB re 1 ubar at l yd at a frequency of #50 kHz.

The water column was isothermal, with a temperature of 55°F. The

amplitudes of the fundamental and the second and third harmonics were

then measured as a function of range. 'ihe approximate Fourier co-

efficientI an. can be seen to fall reasonably close to the experimental

data points, thereby demonstrating its utility. It has been our

experience, however, that this model works best for the fundamental

(n=l) component. AdditionAI experimental evaluations of the Fourier

coefficient given by Eq- (5) (for the fundamental component) are given

in reference 17. A major problem in describing finite amplitude

propagation in the farfield is the difficulty of taking into account

finite amplitude effects in the nearfield of an electroacoustic source.

We attempted to minimize this difficulty by driving a small trans-

ducer at high amplitudes so that most of the nonlinear effects would

occur in the farfield of the source. Our calculations were madewith

a value of l yd for [0, which we assumed was the point at which

spherical spreading began, and we ignored nearfield distortion.

Two excellent papers that analyze the nearfield of a circular piston

using linear theory have recently appeared, one by Zemanekla (1970),

the other by Hobaekl9 (1971). Perhaps the results of their studies,

as well as those cited in ref. 5, can be used to advantage in future

calculations.

  o indicate the  

  

Directivitx of Harmonics

The directivity of the harmonic components in spherical waves

of finite amplitude can be obtained by several procedures. among

which are the method of Westervelt and l‘iadue2° (1961) as well as methods

involving the weak-shock solution. The latter methods have been pursued

_by the authors of this paper21'22. We begin by modifying the boundary

‘condition in the derivation of the weak shock solution by including

:the usual Bessel directivity factor of a piston source. The new

boundary condition is '

r
p = po-f D(9)sin“'t . (e)

where 211(ka sin 8)

“(9) ' (ka sin a)

It can easily be shown that the new weak shock solution becomes

r .

p = pg—S am 2 Bn(c) ain all»: - k(r-r°) , m
n-l

where

o - B‘na )kroln(%)'
D

m
 



  

Ila effect, this is equivalent to replacing the acoustic Mach number I=

:by INS). ‘ihen any known solution for uniform spherical waves. i.e.,x

ithe Fuhini solution. the sawtooth solution or the weak shock solution

ican then be used for directive waves.

4 ’lhe directivity function of the nth harmonic can be obtained

,by normalization with respect to the amplitude at 9:0, i.e..

17(9)n A

Dn(e) =——Pn(0) . (B)

‘No particularly interesting limiting cases are as follows:

I. Fora<l

  .LJBEMD@)]’- ~: ’-. - :;
Dn(9) =W . (9a)

where 61 is the value of a when D(9)-l.

'i'finol'ia small enough for the first term in the series

expansion of each Bessel function to he a good approxi-

mation of the Bael auction, the result is exceedingly

simple; namely ' ' "

“ one) -= o“(9) . (9b)

Ii. Fora>3. r<r$i ,

a 14o
one) D(B)——LHOP(B) . (10)

The first case is applicable before shocks form. Equation (9b) shows

that for relatively mild distortion the directivity of the nth

harmonic is equal to the directivity of the fundamental to the nth

power. 'lhis result was obtained previously ha westervalt and Ilsdue

for the special case of the second harmonic.z The second case, for

strong HHVES at short ranges, results in an expression for the

:directivity that is independent of harmonic number. This result is

valid only near the center of the major lobe when the wave there is

a sawtooth. in this region. the beam pattern of each frequency

component becomes blunted and the suppression of the minor lobes is

reduced. This effect has been demonstrated experimentally for the

‘fundamental component by Shooter. e_t _1_ 23 (1970):

A comparison of theoretical and experimental data on the

directivity of the first three components for case 1(o < l) is

shown in Fig. 4. (The experimental data was taken with the afore-

mentioned 3 in. piston source in conjunction with the propagation

measurements presented in the previous figure.) The data shown are

for a fundamental source level of 110 dB re 1 ubar at l yd at a

measurement range of 117 yd. The agreement between theory and experi-

ment is quite good. It can be seen that the beamvidths are decreased

with increasing harmonic number. It can also be seen that theory -

predicts a reduction in the levels of the minor lobes with increase

in harmonic number.
i

A presentation of experimental data on the first three components

for higher intensity waves is shown in Fig. 5. Here, the source levil

~was 121 do re 1 ubar at l yd. which is considerably higher than that! of

__—_—_—-

*See- also reference 17..
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the previous case (1.3 - 110 dB) but notquite high enough for com-
parison to the theory of the second limiting case, i.e., o > 3.

r< rag;- For this reason. only the experimental data are shown.

One can nonetheless see that the beamwidth of each component has
increased as a result of finite amplitude attenuation.

A curious effect is noted in the experimental data for the
second harmonic beam pattern. A splitting in the first minor lobe
has occurred that is ,not predicted by theory. This effect has also
been observed in the measured patterns of second harmonic radiations
in other experiments we have done, with other sources. at different
frequencies. One irreverent observer has suggested that the phonon:
in this region have opposite spinsI thereby giving rise to the

doublet! the correct explanation probably has to do with distortion
at the transducer face or in the nearfield.)

Discussion
what is the practical significance of shock formation and the

attendant generation of harmonics? As is the case with just about
any phenomenon, there are some advantages and disadvantages, depending
on the potential application in question. 'lhe finite amplitude atten-
uation associated with this process can be a most undesirable effect
in sonar since it causes an extra attenuation that may reduce the
effective range. On the other hand, nonlinearly induced attenuation
would be a welcome effect were it to play a role in the reduction of
noise from sources such as jet engines. Solutions such as those pre-
sented here may be of value in the prediction of such effects.

We have already seen that at least up to the point of shock
formation, and perhaps somewhat beyond, each successive harmonic has
a narrower beam pattern and increased suppression of minor lobes.
Each of these trends is most desirable in high resolution sonar.
The question remains, however, whether it is practical to use the
harmonics when their amplitudes must be low in comparison with the
fundamental. Taking the range r-;- as a typical point where the beam
patterns of the harmonics still have the desirable properties, we find
the second harmonic to be down 8 dB with respect to the fundamental.
the third harmonic down 13 dB. the fourth harmonic down 16 dB, and so
on. 1hese reductions in level may not be prohibitive for some systems.
depending on the tradeaffs involved.* Other possibilities exist.
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THEORY. Eq. 5
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