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ABSTRACT

When the radiation from & baffled piston is sufficiently intense,
4 number of novel and perhaps useful phenomena related to harmonic
generation appear, as a result of nonlinear interactions in the sound
fleld. This paper reporta some recent studies of several of the more
prominent and interesting of these phencmena; in particular, shock
formation, finite amplitude attenuation and the Propagation and
directivity of harmonic radiations. Theery pertinent to the delineation
of acoustic fields is given, along with the results of several experi-
ments done in a fresh water lake.

Introduction

One of the woat popular problems in acoustics is the radlation
of sound from a piston source. The importance of this problem has to
do with its relevance to practical applicaticns such as the radiation
of sound frow loud speakers and from sonar transducers. Up to the
present time, textbook descriptions of the piston problem have
invariably treated only the linear or firat order field. This has been
the case, despite the fact thet significant work related to second
ovder effects in traveling waves generated by piston sources dates
back to Earnshaw* *(1860).

Many recent investigations have improved our understanding of
not only the gecond order field but also its effecr on the primary
radiation. Notable among these investigations is the experimental
work of Ryan, Lutsch and Beyer2(196lh which treated the distortion

*
Mr. Blankenagel's contribution was made while he was a visiting sclencist
at Applied Research Laboratories.

**For a history of the subject, see reference 1.




of rf pulses in wacer. The results of their measurementa, made in che
nearfield of a quartz projector with a relatively large hydrophone,
were compared to the perturbatiou thecry of Reck and Beyer3(1960) The
growth of harmonics was found to increase with rarge in agreement with
plane wave theory. Could, Smith, Willlams and Ryan® (1965) extended
this work in some nearfield measurements of the fundamental, second
and third harmonics, using a tiny probe hydrephone. They found a
considerable fine structure in both the angular and the axial response
for all components. The Brown Unfiversity group has also studied the
nearfield theorerically; see papers by Ingenito, Willisms, and Rogers.

Although the nearfield of the piston is an ifmportamt regionm,
it f{s quite often not as important as the farfield region. This 13
especially true in systems of practical significance in sonar. The
- farfield region of the piston i8s characterized by spherical divergence
and Bessel directivity. Although wuch work has been dme on spherical
waves of finite amplitude,6-12 very lirrle has been done in the area
of naunifom spherical waves assoclated with radiations from piston
transducers.

In the present paper, we attempt a survey of the piston priblem
with emphasis on a more extensive delineation of several second order
entities arising from farfield interaction. The classic problem of
distorticen and shock formarion fa the firast te be examined. Certain
approximate modifications to weak shock theory are made that enable
its resules to be extended to problems inwvolving long range propagatiom,
where ordinary exponential dawping eventually dominates. These modi-
fications will be compared to tche reaulets of several hydroacoustic
experimenta on the propagation and directivity of spherical waves of

finite amplictude.

Weak Shock Theory .
The key steps In the progressive distortion and eventual for-

mation of shock waves are sketched in Fig. L. It is assumed that we
startwitha high amplitude sine wave at some range r,, which may be
taken as the range of spherical divergence. As is well known, the
dependenca of the signal speed on location within the waveform ciuses
a cumulative distorcion until a shock wave is formed at a range r.

At this range, the amplitude of the fundamental is veduced by 1 dB

as & result of the distortion chat has taken place. If che wave is of
gufficient amplitude, it attains & mature sawtooth shape at

the range ¥. At this range, the amplitude of the fundamental is reduced
by 6 dB. Finally, dissipation reduces the shock wave to an "old age”
waveform that is basically sinusoidal. The waveforms shown in chis
figure were constructed by use of weak shock theory and are applicable
to spherical waves of finite amplitude. For example, successive
positions of points on the waveform were determined from
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Here ¢, is the small-signal sound speed and B/A i{s the parameter of
nonlinearity. When shocks form, u 1s replaced in Eq. {(lb) by

(ug +up) /2, where uy 1a the value of u just shead of the shock while
ty, 18 the value of u just behind the shock. The formulas for r and r
shown in Figure | were also derived from the weak shock solution (see
belew). The symbols are defined as follows:

u
c_o , the acoustic Mach number, v, belng
o the peak particle velocity &t r=r,, and

the vavemmber of the fundamental compoment, zh—"

the range for which the ‘tate of finlte
amplitude attenuation 1s equal te that of
small-gignal attenuation for the fundamental

& = small signal attenuation ecoefficient.

In the frequency domain, the weak shock solution may be expressed
in terms of a Fourier series as follows:
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function The symbol U(*) etands for the unit step function.

The frequency domain solution allows the calculation of the amplitudes
of the various frequency components. [Similar solutions for various
gegments of the propagation curve have been obtained by Haugol'nykh,
Soluyan, and Khokhlov? (196311 The By's in the weak shock salution
are the coefficlents of the harmonic compenents of the waveform. When
the distortion parakmeter, oi is lesa than unity, the B, are anzlogous
ko those obtained by Fubini 4 gor plane waves in the shock free region.
When o > 3, the limiting formm for B, may be associated with the

sawvtooth solution, which is #a saymptotic form of the Fay15 aolution
‘for fek>>or .




Digsipation Considerations
A difficulty associated with the weak shock solution {s that

it is not valid at ranges concomitant with significant swmall signal
attenuation. Blackstockld estimated the range of validity of che
wealk shock solution by determining the range at which rhe rates of
finite amplirude and small signal attenuation are equal for the funda-
mental component. We can extend this compuration to the ath harmoaic
by imposing the conditiom,
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where B_ 18 given by the weak shock solution. If the wave is strong
enough for a mature sawtooth to forw, Bn = 2/n{140), in which case
Eq. {3 gives
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It should be remarked that extension of the r criterion to the

nth harmonic is not valid unless the componengﬂfn question is alreedy
in a state of finite amplitude decay. Ar ranges shorter than rmg;,
the weak shock solucion is reasenably valid, at least for the harmonic
component in question. At greater ranges, One WMusL resort to the
Burgers’ equation, a nonlinear equation for progressive waves that
includes the effects of viscosity.* An exact solution of Burgers'
equation is known for plane waves. For spherical waves, however, no
complete, uniformly valid soluticns are known. On the other hand,
partial golutions valid for certain ranges are knownf* and some
promiaing numerical solutions have also been developed and are discussed
elsevhere in these proceedings.

As an alternate approach, we seek to modify weak shock theory
te obtain an approximare formula that will offer a simpler solution
to the problem. . We begin by considering the two agencies of dissipation,
i.e., finite amplitude attenuvation and small signal abscrption, for the
fundamencal component, as shown graphically in Fig. 2, part (a). It
can be seen that finice-amplitude attepuation dominates at ranges
shorter than the equal-vate range, r&él. At Tanges in excess of
t, i, small-signal absorption dominates. Since the attenvation rates
of rthe two agencies are predicted to be the same at r, , we choose
an approximate Fourler coefficient that is given by wesk-shock
theory for ranges shorter than r and makes & smooth transition to
small-signal attenuation at r$§%. This approach may be generallized,
and the Fourier coefficient for the nth harmonic {s given by

An(a 8k, 1) =1[1 - U(t'!‘::i)]'ﬂn@,e.k.r) (5)
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*See. for example, Ref. 16.
"See, for example, Ref. 9.




fere the qnir.__n_)t,_ep:,flg_llctlgn. U{+), 1s used to indlcate the
tranaition tetn one form of séldisto ifle SEREr’ That the transi-
tion is smooth is evident from the plot for the fundamental com-
ponent shown in Fig. 2, part (b).

TVPE  WITHIN THL AULED  AREAS
Propagation Measurements
The extent to which this model may be valid is demonstrated by .
a comparisbazwithiche esperinental results shown in Fig. 3.

A baffled, lead-zirgonate, lead-titanate piston, 3 inches in diameter,
was placed "ét a*deptn 6f™10 £t in a fresh water lake and driven at a
gource level of 127 dB re 1 pbar at 1 yd at a frequency of 450 kHz.
The water column was isothermal, with & temperature of 55°F. The
amplitudes of the fundamentzl and the second and third harmonics were
then measured as & function of range. The approximate Fourler co-
afficlent, Ap, can be seen to fall reasonably close to the experimental -
data points, thereby demonatrating fLes utility. It has been our
experience, however, that this model works best for the fundamental
(n=1) component. Additional experimental evaluations of the Fourler
coefficient given by Eg. (5) (for the fundamental component) are given
in reference 17. A major problem in describing finite amplitude
propagation in the farfield is the difficulty of taking into account
finite amplitude effects in the nearfield of an electroacoustic source.
We artempted to minimize this difffculty by driving 2 small trans-
ducer at high amplitudes so that most of the nonlinear gffects would
occur in the farfield of the source, Our calculations were made with
a value of 1 yd for r,, which we assumed was the point at which
apherical spreading began, and we ignored nearfield distortion.

Two excellent papers that analyze the nearfield of a circular piston
using linear theory have recencly appeared, one by ZemaneklB (1970},
the other by Hobaekl? (1971). Perhaps the results of their scudies,
as well as those cited in ref. 5, cah be used to advantage in future
, calculationa.

Directivity of Harmonics
The directivity of the harmonic components in spherical waves

of finite amplitude can be obtalned by several procedures, among

which are the method of Westervelt and kaduell {(1961) as well as methods
involving the weak-shock solution. The latter methods have heen pursued
by the authors of thig paperzl'zz. We beglan by modifying the boundary
condition in the derivation of the weak shock solution by including
{the usual Bessel directivity factor of a piston aource. The new
boundary condition is '

T
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1t can easily be shown that the new weak shock solution becomes
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lIn effect, this ia equlvalent to replacing the acoustic Mach number €
'by €p(@). Then any known golution for uniform spherical waves, L.e.,
ithe Fubini solution, the sawtooth solution or the weak shock solution
jcan then be used for directive wavea.

. The directivity function of the nth harmonic cam be obtained
by normalization with respect to the amplitude at 80, i.e.,

o P, @) . R
P, =5 @ - (8)

Two particularly interesting limiting cases are 88 follows:

I. Fora <1
LR T '.-_-;Jn[ud'lD(Q) Foowe onteow
Dn(a) = —[—J——Jn w0, , (9a)
vwhere o1 {5 the value of o when D(@)=l.
1¢ 'y 'is emall enough for the first term in the series
expansion of each Besgsel function to be a good approxi-

mation of the Bessel function, the result is exceedingly
simple, namely -
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The first caae is applicable before shocks form. Equation (9b) shows
that for relatively mild distortien the directivicy of the nth
harmenic is equal to the directivity of the fundamental to the nth
power. This result was obtained previously ba Weatervelt and Radue
for the special case of the second harmonic.2V The second case, for
strong waves at short ranges, results in an expression for the
ldirectivity that ts independent of harmonic¢ number. This result is
valid only near the center of the major lobe when the wave there is

a sawtooth. in this region, the beam pattern of each frequency
component becomes blunted and the suppression of the minor lobes is
reduced. This effect has been demonstrated experimentally for the
-fundameatal cowmponent by Shooter, et al 3 (1970).*

A comparison of theoretical and experimental data on the

directivity of the first three components for case I (<1} is

ghown in Fig. 4. (The experimental data was taken with the afore-
mentioned 3 in. piston source in conjunction with the propagation
measurements presented in the previous figure.) The data ghown are
for a fundamental source level of 110 d¢B re 1 wbar at 1 yd at a
measurement range of 117 yd. The agreement between theory and experl-
ment is quite good, It can be seen that the beamwidrhs are decreased
with increasing harmonic number. It can -alsc be seen that theory
predicts & reduction in the levels of the minor lebes with increase
.in harmonic number. i

A presentation of experimental data on the firet three components

for higher intensity waves is shown in Fig. 5. Here, the source level
was 127 dB re 1 ubar at 1 yd, vhich is considerably higher than that! of

—

*
See- alao reference 17.
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the previous case (L; = 110 dB) but not quite high enough for com-
parison to the theory of the second limiting case, i.e., o > 3,

r< 'm:x' For this reason, only the experimental data are shown.
Coe can nonetheless see that the beamwidth of each componrent has
increased as a result of finite amplitude attenuation.

A curious effect {8 noted in the experimental data for the
second harmenic beam pattern. A splitcing in the first minor lobe
has occurred that is not predicted by theory. This effect has also
been observed in the measured patterns of second harmonic radfations
in other experiments we have done, with other sources, at different
frequencies. One irreverent observer has suggested that the phonons

in this region have opposite spins, thereby giving rise to the
doublet! (The correct explanation probably has to do with distortion
at the tranasducer face or in the nearfield.)

Discussion

What is the practical significance of shock formation and the
attendant generation of harmonics? Ae fs the case with just about
any phenomencon, there are some advantages and disadvantages, depending
on the potential application in question. The finite amplitude atten-
uation associated with this process can be a most undesirable effect
in sonar siuce it causes an extra attenuation that may reduce the
effeceive range. On the other hand, nmonlinearly induced attenuvation
would be a welcome effect were it to play a role im the reduction of
noise from sources such a8 jet englnes. Solutions such as those pre=
sented here may be of value In the prediction of such effects.

We have already aeen thar at least up to the poine of shock
formation, and perhaps somewhat beyond, each successive harmonic has
a narvower beam pattern and Increased suppression of minor lobes.
Each of theae trenda is most dealrable in high resolurion sonar.
The question remains, however, whether it is practical to use the
harmonice when their amplitudes must be low Ln comparison with the
fundamental. Taking the range rsr as a cypleal point where the beam
patterns of the harmonics still have the desirable properties, we find
the second harmonic to be down & dB with respect to the fundamental,
the third harmonic down 13 dB, the fourth harmonic down 16 dB, and so
on. These reducticns in level may not be prohibitive for some systems,
depending on the tradeoffs ilavolved.* Other poesibilities exisc.
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