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Abstract

Existing theory is extended to model the average field of sound propa—
gating from directive sources in a shallow water waveguide. The role of
narrow beam sources in the excitation of modes is explored. Sample calcula—
tions are given.

Introduction

In several papers, Hestonl’2 has advanced a simple energy flux method,
first suggested by P. J. Westervelt, for the purpose of understanding and
giving perspective to several characteristic regimes of shallow water propa—
gation. Although this method is based on elementary geometric considerations,
the work of Brekhovskikh3 may be cited for precise equivalents, obtained from
first principles, which support many of the same conclusions. Recently,
Shang Er-changh has used a different approach but has arrived at similar re-
sults. All of these models are applicable to linear radiations from omni-
directional sources.

The present paper extends Weston's method to include finite beamwidth
sources typical of both conventional linear and parametric sources operating
in isothermal water. Although the results obtained deal only with the average
field intensity as predicted from consideration of generic energy flow and
loss mechanisms, they are nonetheless quite useful, both as instructive toolsand as simple models for engineering design work.

The incorporation of parametric theory in the present paper is quite
flexible in that practically any model that accounts for parametric generation
in the freefield provides a viable starting point to the theoretical framework.

Linear Source Models

A shallow water medium of depth H overlays and includes an absorptive
sedimentary bottom, having a critical grazing angle oc that defines a limit
for "total" internal reflection. As always, dc = arc cos cw/cs, where cw and
C5 are the mean sound velocities in the water and sediment media, respectively.
The water is assumed to be shallow in the acoustic sense, that is, the ratio
H/A, where A is the wavelength, is less than a few decades.

The sound source is aimed horizontally from a position S near middepth,
and has a halfpower beamwidth of 2¢g. This source has a nearfield extending
to a range R0 = flaz/A, where a is'an effective source dimension. For the
purpose at hand, it is not necessary to model the transducer nearfield since
an extrapolation to a 1 m source level will suffice.
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We begin with the sonar equation for the sound pressure level at range R0,in the form,

SPL = 10 log 9 + 170.8 + DI - 10 log R02 , (1)

where P is the acoustic power radiated, and DI is the directivity index ofthe transducer. Some may prefer to set R0 = l m in these equations; thiswould make no difference at long ranges.

At ranges R > R0, the radiation proceeds initially into a region of
spherical spreading, where the propagation loss becomes

2 .I L = 10 log R2/Ro + sz , ;- (2)

Here, ow denotes attenuation in the water column. The extent of the sphericalspreading region may depend on several conditions;

For fairly large source beamwidths, spherical spreading may apply only
out to the range associated with the critical angle of the bottom. Thus, forpa > ¢c, where ¢¥ is the halfpower angle of the beam,'we take the extent ofthis region_as Ro < R < H/Zoc. This simply means that energy has a tendencyto be radiated.into the bottom at high grazing angles. The geometry for largebeam insonification is sketched inhFig. l.
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FIGURE 1. LARGE BEAM INSONIFICATION
SHOWING SPHERICAL AND CYLINDRICAL REGIMES

For smaller source beamwidths, such that o5 5 oc, spherical spreadingapplies out to the range at which the been effectively "fills" the watercolumn, i.e., over the span R0 < R < H/Zog. The geometry for this case is
sketched in Fig. 2.
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FIGURE 2. MODERATE BEAM, INSONIFICATION
SHOWING SPHERICAL AND CYLiNDRICAL REGIMES

Beyond the region of spherical spreading, we enter one of cylindrical
spreading, brought on by increased bottom reflectivity. Provided we are
above the cutoff frequency (= cw/bflpc), the propagation loss becomes

1
'L = 10 log[(RH/2¢)/R°2]+ a": , (3)

where ¢ = ¢é or oa, whichever is smaller.

For large beams, the cylindrical spreading region is usually quite limited
in lateral extent and in some cases is insignificantly small. It will be shown
that decreasing the source beamwidth increases the extent of this region.
Normally, this region is characterized by the internal reflection of a large
number of rays or modes. The finite attenuation of either conceptual entity
upon bottom reflection ultimately leads to the next propagation regime, known
as the mode stripping region. . -

Although the source emits a continuum of rays, the medium imposes a
selection process upon their existence, much as a stringed instrument_selects
and resonates preferred harmonics of the notes played. In the case of shallow
water propagation the analogous "harmonics" are the spatially selected modes,
each of which consists of a pair of upgoing and downgoing waves ricocheting
down the waveguide on unique angular paths.

Following Weston's approach,1 we assume that for any allowed model or
eigenray angle oi, there is one loss producing bottom bounce each time the
horizontal rangecycles through an incremental distance 2H/o. Thus at
range R, there are n = Rp/ZH bottom bounces. If the loss at each such event is
taken as do (in units of dB/rad.), then the bottom loss accumulates as

LB(¢,R) = a¢2R/2ll = 10 log exp - la¢2R/8.68H . (4)
Hestonzargued that the gaussian dependence on d in the preceding equation.
should.be tied in some way to the critical angle o . This was done by allow—
ing the exponent to take on the value n/4 at o = $5, which provides for a
little more than 3'dB angle dependent bottom loss at the range R = 6.8H/ooc2.
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The propagation loss in this region is found by substituting the resulting
value for on = o = V 6.8H7nR'into Eq. (3), to yield

L -= 10 1°43”: “’5 £5 l5.2xo'2]+ awR . (5)

This is a form of the well known three halves law appropriate for what is 2
known as the mode stripping region. Thus, at ranges in the vicinity of 6.8H/uoc,
bottom losses have begun to strip off the modes through a gaussian absorption
factor which is dependent on the steepness of the eigenray angles. This start-
ing range for the applicability of Eq. (5) is of course applicable to the broad
beam case, pg > oc. Although it is difficult to illustrate mode stripping,
a sketch of a few modal eigenrays is offered in Fig. 3 for the case of insoni—
fication in a fairly narrow angular sector.

      
RADIATED
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FIGURE 3. MODE STRIPPING FOR THE SMALLBEAMWIDTH CASE
SHOWING ONE EIGENRAY COMPLEMENT FOR TWO MODES DEPICTED

A similar criterion may be applied to the narrow beam case, ¢ :5 oc.

Here, we allow the exponent in Eq. (4) to take on the value n/A at the angle
0 = o5, which provides for a little more than 3 dB angle dependent bottom loss

at the range R = 6.8H/u¢52. The resulting propagation loss is identical to

Eq. (5). The only difference between the two cases is the range at which

Eq. (5) might become applicable.

Since the stripping of the higher ordered modes is accentuated by the

steepness of their eigenray angles, these_modes are eventually attenuated,

leaving only one propagating mode. By the time this has occurred, the surviv-

ing mode will itself have suffered some angle dependent attenuation. Although
the sole surviving mode is sometimes not that of lowest order (depending for

example on bottom peculiarities), we here assume that it is the first mode,

again.in consonance with Heston's analysis. '

_For many real bottoms with phase shifts near I radians, the modal angle

for the first mode is ¢1 = l/ZH. Taking this as the angle at which about half
of the energy of the first mode is itself stripped off, we can again use the

exponent of Eq. (4) to deterginezthe range at which this occurs. For broad
beams, the result is R = 27H lax . Beyond this range, the surface and the
bottom try to contain a sound field propagating at a constant angle, and we are
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back to cylindrical spreading plus someattenuation losses. The adaptation
of Eq. (3) to this case leads to

L = 10 log[(RH/2¢1)/R02 1+ na¢1 + owR ,

or : (6)

L = 10 log KHZ/AR 2 + 10.20/833 + o R ,o w

where the second term represents the bottom loss of the first mode.

In the eVent that one has a very narrow beam, i.e., ¢ :Edl, the starting
range of the single mode region is not determined as above. Obviously, in
order to get such'a highly directive radiation to propagate, it would be
necessary to aim it at one of the eigenray angles appropriate for the exci-
tation of some mode. This case is illustrated in Fig. 4. In practice, it is
only necessary to employ one beam in the vicinity of an eigenray angle, rather
than the two beams shown. For the first mode, this beam may encompass both
eigenray angles. If this is done, it is reasonable to assume that modal
propagation would beginafter the beam has spread to,the point of filling up
the water column. In this case, the starting range becomes R = H/2og.

 

FIGURE 4. SINGLE MODE EXCITED- BY VERY
NARROW BEAMS CENTERED ON EIGENRAY PAIRS

Although Eqs. (2), (3), (5), and (6) describe successive propagation
regimes, it should be remarked that these may not always follow in succession.
In particular, the use of an extremely narrow beam appears to circumvent some
of these regions. Giyen that okasA/ha, one can use the inequality defining
the extent of the spherical spreading region to show that it would be skipped
provided a E: 2H/n. Similarly, the mode stripping region would be skipped,
provided @52 h. '

Parametric Source Models

The application of parametric arrays to shallow water (waveguide) propa—
gation differs in several respects to that of linear sound sources. Physical

5.1
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and engineering aspects of this problem have beendiscussed in previous paperss’6
which have presented theory on preferential mode selection as well as the
results of experiments in both a laboratory tank and in a natural lagoon.‘

Drawing from previous experience, it is useful to make one restriction
concerning the length of the parametric interaction volume in the shallow
water waveguide. Since there is usually a phase shift near n radians at both
the surface and bottom (at low grazing angles), one must consider the problem
of destructive interference of parametric sources and their images within this
volume. This problem has been treated for the freefield case,7 and is illus—
trated in this context in Fig. 5. Since 180° phase shifts in each primary
have no effect on the phase of difference frequency generation, it can be
argued that difference frequency sound generated after a phase reversal is
simply 180° out of phase with that reflected from the previous segment of the
interaction volume.

-‘_ FIRST REFLECTIONexer~~el~ 180° PHASE sum

    
M~A~fii~Mp~

    \_ FIRST SEGMENT SECOND SEGMENT]
lNTERACflON INTERACTWN
VOLUME VOLUME

  

FIGURE 5. THE PROBLEM OF PHASECREVERSAL
WITHIN A PARAMETRIC INTERACTION VOLUME

For the case of a shallow water waveguide, it is convenient to avoid the
parametric image interference problem by limiting the effective length of the
interaction volume, LA. This can be done by design by simply restricting LA
to distancesiERBF, where RBF denotes the range at which the parametric beam
"fills up" the water column. For a source at middepth, REF = H/2¢g. This
case is illustrated in Fig. 6. Since LA has an exponential taper, the definition
of effective length can be neither exact nor critical. Some might prefer
defining LA as the l/e absorption distance of the primaries, i.e., LA = 1/5 ,
where E is the mean primary absorption coefficient. Although this is a sage
and neag definition, it is probably overly restrictive, since there is always
some bottom bounce loss which serves to further truncate the parametric array
in much the same way as does the water column absorption. Perhaps a better
choice is the —3 an absorption ragga LA = -(1n 1//§)/E . When this is equated
to R3 one obtains EE;-2¢%(En 1/ 2)/H, which enables Ehe primary frequency fp
to be determined through 5P = Ep(fp). In practice, it may be convenient to
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truncate the parametric array with finite amplitude attenuation. This enables
one to vary the array length by varying the transmitted power.

 

FIGURE 6. RESTRICTION 0F PARAMETRIC ARRAY
LENGTHS TO AVOID PHASE REVERSAL INTERFERENCE

Many theoretical models 0f parametric arrays operating in infinite media
have been published. .The complexity of these solutions usually increases with
their generality and applicability to various problems. Given that the pur-
pose of the present paper is to address shallow water applications with simple
models, we shall favor the simplest parametric array descriptions.

Most parametric arrag models have their roots in the solution to an in-
homogeneous wave equation which can be written in terms of the difference
frequency sound pressure level as

_p 1mm
SPLdUiz‘ -‘:‘|,t) = 20 log{4—"° g‘tile‘dldv: , (7). v n: - rl

Where ['1 is the Green's function, i is a.vector from the origin to the field
point, E is a vector from the origin to the element of integration, V denotes
the interaction volume, and q is the source strength density,

_ 8 i 2 'q(r,t) — 2 A at pp (r,t) - (8)
.00 ¢:0

 

Here 8 = l + %(B/A), where B/A is the parameter\of nonlinearity, and po and co
are the mean density and sound speed of the medium.
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From Eq. (7), one can go in many directions with modeling. These include
direct numerical integrations, as well as the development of approximate
closed form solutions. The latter are too numerous to surve here, but
Professor Beyer's book is cited as one source of comparison. 0 Since para—
metric array modeling is a popular topic, the current proceedings as well as
those of the International Symposia on Nonlinear Acoustics are also cited.11

It is perhaps useful to state Westervelt's original solution to Eq. (7),
especially since we are emphasizing models of minimal complexity. This solution
can be written

. i 2
u p p S B

SPLd(R°,B) = 20 log :%[apz + kdsinh(B/2)];il . (9)
81rR°p°co

where 50 is the cross sectional area of the beam of plane wave primary radia-
tions; p1 and p2 are the peak primary pressure; 6 is the angle variable, and
the subscript "d" denotes difference frequency parameters. The half angle
-3 dB) beamwidth of‘the difference frequency radiationVis

m5 =' 2(Ep/kd);§ . (10)

Although Eqs. (9) and (10) gre quite useful, they are limited by the assumptions
stated in their derivation, ans should not be applied in cases ipxolving
either spherical diffraction9'1 or finite amplitude attenuation.

The procedure to be followed in applying any parametric model to shallow
water propagation under the present assumption_is_to use the parametric free-
field theory out to the range REF at which the beam completely fills the water
column, where the interaction volume is-by then truncated by either absorption
in the water column, by finite amplitude attenuation or by boundary losses,
or by some ofeach. _From that point on, the propagation is governed by the
linear theory diSCussed in the previous section. It should be remarked that
this process is analagous to beginning with Eq. (1) which also computes abso—
lute sound pressure levels as a function of range. It is therefore necessary
to normalize when going from either of Eqs. (1), (7) or (9) to the otherwise
self-normalizing propagation loss results of the previous section.

Care should also be taken with respect to the half power angle p of
the parametric beam and its relationship to the choice of any of the ropaga-
tion regimes defined by Eqs. (2), (3), (5) or.(6).‘ For example, the spherical
spreading region, Eq. (2), would be skipped if ¢5s2¢c and the mode stripping
region, Eq. (5) would be skipped if ¢k=a¢l.

Examples

Two illustrations of the present models are discussed here in the context
of a comparison between linear and parametric projection of acoustic beams
in shallow water.

5.]
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The first, shown in Fig. 7, depicts sound propagating at 500 Hz from a
2.3 m diameter source excited with 80 kw of electrical power, assuming a 50%
transducer efficiency. The water column is 50 m deep, overlying a sand bottom
having a sound velocity 15% higher than water, a critical angle of 30°, and
a bottom loss a of 12.4 dB/rad. The transducer is located near middepth,
with a horizontal orientation.
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FIGURE 7. COMPARISON OF MEAN PROPAGATION CURVES FOR A
2.3 m diam SOURCE RADIATING LINEAR AND PARAMETRIC SIGNALS
AT 500 Hz IN A SHALLOW WATER WAVEGUIDE, 50 In DEEP

Since the linear version of this source has a half power beamwidth of
80° (pg= 40°), spherical spreading applies out to the critical angle range,
a distance of 48 m. For this case, mode stripping becomes significant at 100 m,
while the single node region emerges at 31 km. The 3 dB artifact at the
start of this region is discussed in Ref. 1. Although the present models
treat only the mean propagation curve, considerable multipath in the cylin-
drical spreading region and modal interference in the mode stripping region
would be present and would appear as wild fluctuations about the mean, were
they to be taken into consideration. :

Parametric operation of this source, also depicted in Fig. 7, arises
from nonlinear interaction of primaries radiated at 13.75 and 14.25 kHz.
Given the same available electrical power and transducer efficiency, one
would here radiate about 20 kW per primary tone. The peak primary source
level during the constructive interference phase of the composite, two tone
radiation extrapolates to 160 dB re 1 uPa at l m. Application of weak shock
theory indicates this radiation would form a discontinuity near the Rayleigh
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distance of 40 m, with stronger shocks occurring in the spherical spreading
field beyond. As a result, this parametric array is truncated by finite ampli—
tude attenuation at a range of about 700 n. v

The parametric propagation curve shown in Fig. 7 takes these factors
into consideration, through appropriate solution(s) of Eq. (8). This includes
a three-dimensional numerical integration in the primary nearfield. The far-
field solution was executed by Professor Rolleigh,1 who reduced the problem 15
to a single integration which also contains a finite amplitude taper function.
Finite amplitude attenuation broadens the half power angles of the parametric
beam to about 12°, which leads to beam intersection with the bottom at 735 m.
Since the eigenray angles for the first mode are centered at tl.7°, most of
the energyéin the parametric beam should couple into the first mode of prop—
agation. ’ The portion of the curve beyond the array truncation and/or beam
intersection point is therefore constructed from Eq. (7), the single mode
result of the present model. Preferential excitation of the first mode
under these conditions minimizes multipath and multimode interference, and
should make the mean propagation curve depicted here a good representation of
the actual situation. '

Although discrete modal excitation is an interesting phenomenon that has
potential as a research tool as well as for clear channel communications,
there are situations where it may be necessary to emphasize other aspects of
the application of parametric arrays to shallow water sound. Perhaps the
most important of these situations is the frequent requirement for higher
parametric source levels. This can be achieved by decreasing the ratio of
primary to secondary frequencies. For the 2(3 m transducer in the 50 m wave—
guide at hand, we might not wish to lower the primary frequencies as this
-would increase the length of the parametric array which may lead to destructive
interference effects within the interaction volume. A better approach may
be to raise the difference frequency. Choice.of a 2 kHz difference frequency,
for example, provides for a downshift ratio of”7, which compares to a value
of 22 for the previous example at 500 Hz.

Propagation curves for a 2 kHz example are shown in Fig. 8, again com-
paring linear and parametric radiations. The half power angle for the linear
source is 10° which is smaller than the 30° critical angle. This is in con-
tradistinctionto the previous case for a 500 Hz radiation. This diminishes
the vertical angular extent of steep angle modes and increases the range span
of the cylindrical spreading region. The mode stripping region is also ex-
panded due to the reduction in wavelength and the consequent excitation of
more modes. 1

Parametric operation of the source again leads to primary beams of half
power angles near 2°. Since the modal angles are now in(0.43)°, we should
excite several modes with the parametric beam. However, the parametric beam
is much smaller than its linear counterpart and this further increases the
extent of the cylindrical spreading region. The mode stripping region
for the parametric source is smaller than for the linear case simply because
of the smaller beam and the smaller number of modes available there for strip-
ping. This region ends at the same range for both linear and parametric sources.
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Within the cylindrical spreading and mode stripping regions, many interference
fluctuations not treated by the present model will exist. These should be
less severe for parametric excitation.
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FIGURE 8. COMPARISON OF MEAN PROPAGATION CURVES FOR A
2.3 III diam SOURCE RADIATING LINEAR AND PARAMETRIC SIGNALS
AT 2 kHz IN A SHALLOW WATER WAVEGUIDE, 50 In DEEP

Discussion

Although this paper has addressed only the mean axial propagation char—
acter of linear and parametric sources, many other aspects of the problem
warrant consideration. When the problem of echo to reverberation becomes
important, the high directivity of the parametric source begins to weigh
favorably against equivalent broad beam linear sources. Hide bandwidth capa-
bilities (for signal processing) as well as Doppler considerations5 also ap-
pear to favor parametric sources.

Vertical strings of linear elements appear to offer better directivity
than the linear array considered here. However, they are usually omnidirec—
tional in the horizgntfil plane and are usually applied to single mode selection
only as receivers.1 '

One should also consider the electroacaustic efficiency of linear trans-
mitting arrays inthe very low frequency regime. In the preceding discussion,
an efficiency of 502 was assumed; however, this is usually only possible with
very large resonant elements that would have dimensions of several meters at
500 Hz. Smaller elements have lower efficiencies and this may further favor

5.]  
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the practicality of the parametric array for shallow water applications.

Much work remains to be done before these speculations can be evaluated.

The present models are simple and adequate for many purposes but room for'
Experimentation is also in its infancy and must of course,

be conducted in order to further the understanding of the shallow water problem.

improvement exists.

Summary of Results

Parameters:

a

U: «1 l"
'o
O

F
c
a
n

<:
H
L
N
L
D
-

II

where

ll transducer diameter

wavelength

'acoustic power

directivity index

range

1132/) (the Rayleigh distance)

sound pressure level

static density

difference frequency.wavenumber

vector from the origin to the field point

vector from the origin to the element of integration

volume of integration

source strengthdensity

1 + g(B/A)

parameter of nonlinearity

mean sound speed

time

primary pressure field

attenuation coefficient of water

water depth

half angle beamwidth

critical angle of bottom

bottom loss, dB/rad.

propagation loss
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Starting point for a linear radiation at a farfield point R0 = Hal/A:

SPL = 10 log P + 170.8 + DI — 10 log 12.02 (1)

Starting point for a parametric radiation in the interaction region:

_p 1kd|fi—?|
a _2 all e—_SPLd(R) 20 legit” a: d a dv' , (7)

v IR ' rl

where

_ 8 i 2q(r,t) — 2 4 at P (r.t) . (8)

0o co ’

which includes an appropriate finite amplitude taper function for the peak
interference maxima in the composite primary pressure pp(r,t).

Spherical spreading region:

L = 10 log RZIRI? + a R
W

¢c
' . _ whichever
Valld for R0 < R < H/2¢ where ¢ — ‘ is smaller

4’35
Cylindrical spreading region:

L = 10 log[(RH/2¢)/R:] + awR

¢c
whichever2

valid for H/2¢ < R < 6.8H/a¢ vwhere o | is smaller

‘e
Mode stripping region:

L = 10 log R3” nLi Gals-21102] + aHR

27H3/uA2 for 4”; > t1 ¢
valid for 6.8H/u¢2 < R < l where ¢ = ‘

1-1/2”i for ¢% 2 t1 ¢l5 is

5.1
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Single mode region:

L = 10 log KHz/AR} + RAZa/BH3 + awR

27H3/aA2 for ¢y> ¢1
valid for R > 2

HIM;i for ea? d1
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