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Acoustic radiation from a mechanical structure due to broadband forcing may be described by a 

frequency response function (FRF) if the forcing waveform is known. This FRF is dependent on 

the structure's material, geometry, and boundary conditions and changes to these mechanical 

properties can result in detectable changes to the FRF. Even if the input forcing is unknown, time-

domain cross-correlation methods can be used to detect differences in remote acoustic recordings 

compared to baseline measurements collected in the absence of mechanical changes. In either case, 

collecting suitable remote acoustic measurements may be difficult in a reverberant environment 

due to the detrimental effects of multipath. Here, experimental results are presented for remote 

acoustic detection of mechanical changes to a vibrating 0.3-m-square by 3-mm-thick aluminium 

plate in a reverberant environment. The plate has nominally clamped edges and is subjected to 

swept-frequency base excitation. Sound from the plate is recorded remotely with a 15 microphone 

array with varying levels of plate-boundary defects simulated by altering the clamping 

configuration at the plate’s edges. These array recordings are then processed using Synthetic Time 

Reversal to reconstruct the radiated sound signal corrected for the environment's unknown 

reverberation. These reconstructed signals are used to compute FRFs in the case of known input 

forcing, and compared directly in the case of unknown input forcing. The effectiveness of both 

approaches is compared for the detection of simulated boundary defects. [Sponsored by NAVSEA 

through the NEEC, and by the US DoD through an NDSEG Fellowship] 
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1. Introduction 

When a mechanical structure is damaged or otherwise mechanically changed, its vibrational 

characteristics are subsequently affected[1,2]. If the structure is in a fluid medium, such alterations 

in vibratory behavior likewise result in changes to the sound radiated from the altered structure[3]. 

The radiated sound can be recorded using passive receivers to gather insight into the health of the 

structure. In particular, if a baseline measurement of a “healthy” structure can be collected, future 

measurements may be compared to the baseline for classification as changed or unchanged. Remote 

acoustic detection provides benefits over other popular methods of damage detection – such as 

vibration monitoring[4-6], acoustic emissions testing[7,8], and nearfield acoustic holography[9,10] 

– in that it is truly remote and non-contact. While these methods are certainly powerful tools, there 

are significant drawbacks associated with requiring transducers to be near or in contact with a test 

structure. Challenges include difficulty of installation, infeasibility of in situ measurements, aging 

and failing transducers, and unexpected effects of physical coupling between transducers and test 

structures.  

 While remote acoustic structural health monitoring (SHM) avoids many of the issues 

associated with transducer placement, it does require accurate signal identification which can be 

difficult in real-world environments due to unknown environmental factors like noise, acoustic 
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environment uncertainty, and multipath propagation[11]. Multipath presents a particular difficulty 

as the desired broadcast signal is convolved with the environmental Green’s function which is 

generally unknown, and conventional techniques are incapable of inverting this operation. 

However, once signal identification is achieved, there are many ways of quantifying the differences 

between baseline and test measurements, the choice of which may affect the performance of a 

detection test. In certain scenarios, one may even know the a structure’s input forcing which can be 

leveraged by computing a Frequency Response Function (FRF) to gain further insight[4]. 

 In this paper, small mechanical changes in a vibrating plate are detected using remote acoustic 

array data collected in an unknown reverberant environment. A method of blind deconvolution is 

used to reconstruct the plate’s radiated acoustic signature in spite of strong reverberation. Various 

metrics are then used to quantitatively compare baseline “healthy” plate measurements, to those of 

potentially changed plates. The benefits of knowing input forcing, and the FRF, are investigated and 

compared to tests when input forcing is not considered. Detection performance of the various 

approaches is quantified and summarized using common detection statistics. 

2. Methodology 

2.1 Experimental Setup 

 The experimental apparatus is shown in Fig. 1. The radiating test structure consists of a 

clamped 30 x 30 x 0.3 cm aluminum plate clamped along all sides to a rigid aluminum base. Eight-

second-duration linear frequency sweeps from 100-2000 Hz are created on a computer and sent 

through a DAC to a Modal Shop K2007E01 series electrodynamic shaker providing input forcing to 

the rigid test base. The exact input forcing is simultaneously recorded using a PCB 208C01 inline 

force transducer. Sound from the resulting plate vibration is then radiated into the laboratory 

environment and recorded at a vertical microphone array with 2-inch spacing between the 15 PCB 

130E20 receivers (total aperture of 0.7 m). The array data are then band-passed filtered, and sent to 

a National Instruments PXIe-6368 ADC system. The input forcing bandwidth is chosen to 

encompass approximately the first dozen vibrational modes of the test plate. 
 

 
Figure 1: Experimental setup with plate apparatus and 15 receiver vertical array in 

the test environment (left) and 7 lbf shaker providing base excitation of the plate 

(right). A detailed view of the plate and clamping geometry is shown at top left. 

 

Mechanical changes were introduced to the test plate by disengaging select clamps at the 

plate edge, thereby modifying the boundary conditions representative of fastener or weld failure. 
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Two test cases were considered: a single clamp disengaged near the center of the plate edge and a 

single clamp disengaged near a corner, a less vibrationally active region. In addition, measurements 

of a fully clamped “healthy” plate served as a baseline against which to test the detection metrics. 

The various clamping configurations are detailed in Fig. 2. 

 

  
 

The testing environment consists of an approximately 24 x 25 ft laboratory space at the 

University of Michigan which provided a reverberant environment with a T60 time of about 0.5 sec. 

The extent of reverberation is quantified by the signal-to-reverberation ratio (SRR) defined 

 

𝑆𝑅𝑅 ≡ 10 log10 (
𝑆𝐸Direct

𝑆𝐸Reverb
)                                                        (1) 

where SEDirect and SEReverb are the signal energies of the direct path and all-other-paths portions of 

the signal, respectively. The SRR is a function of plate position in the room (fixed for all 

measurements) and the array location. For each array location, the SRR was measured by 

substituting a simple home audio speaker for the plate apparatus, and broadcasting a 100-2000 Hz 

linear chirp that was recorded by a single receiver at the array center. Reference measurement of the 

broadcast signal allowed for a matched filter to be applied to these reverberation data, from which 

SEDirect and SEReverb were computed. This additional filtering step was required as the broadcast 

signals – on the order of seconds – were far too long to be truncated in time.  

2.2 Synthetic Time Reversal 

Synthetic Time Reversal (STR) was used to estimate the vibrating plate’s original broadcast 

acoustic signature from acoustic measurements in the reverberant laboratory without a priori 

knowledge the original waveform. STR is an existing blind deconvolution method which is fast, has 

a low computational cost, and requires no a priori knowledge of source or array location[12].  

The mathematical details of STR have been discussed previously[12] and are omitted for 

brevity. Ultimately, for an M receiver array with Fourier transformed receiver outputs 𝑃̂𝑗(𝜔), STR 

estimation of a broadcast signal is accomplished by selecting weighting vectors 𝑊𝑗(𝜔) such that a 

surrogate Green’s function can be constructed for each receiver using only the recorded waveforms. 

The surrogate Green’s functions are then used to synthetically backpropagate the original array 

recordings, thereby providing an estimate of the original broadcast signal. Conveniently, it has been 

shown that the weights 𝑊𝑗(𝜔) required for this operation are the same weights computed from 

conventional beamforming techniques[13]. The Fourier transform of the estimated signal is then 

given by 

𝑆̂𝑒𝑠𝑡(𝜔) =

{
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Figure 2: Plate Clamping 

geometry for the two test 

cases and baseline. Blue 

and red circles represent 

fully engaged and dis-

engaged clamps. Green 

pluses (+) indicate the 

location of the input 

forcing at the base. 
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where 𝛼(𝜔) is a phase factor given by 

𝛼(𝜔) = arg(∑𝑊𝑗(𝜔)

𝑀

𝑗=1

𝑃̂𝑗(𝜔)) 

 

   (3) 

2.3 Detection Metrics 

With STR-reconstructed signals for baseline and test cases in hand, three metrics were used to 

quantify change between the signals. Each detection metric is the function of one test measurement 

and one baseline, resulting in a scalar value. To statistically evaluate detection performance a batch 

of eight acoustic array measurements was collected for each of the two partially unclamped test 

cases and two batches of eight array measurements were collected for the fully clamped baseline. 

Every pair-wise combination of reconstructed signals was evaluated using one of the metrics 

outlined below. Metrics were computed between the two test case batches and one of the baseline 

batches, and similarly the two baseline batches were evaluated against one another. This ultimately 

yielded three sets of 64 detection metric samples (one set for both test cases, and one for the 

baseline), which were binned into histograms and used to statistically quantify detection 

performance. A flowchart of the detection procedure is provided in Fig. 3. 

 

 
 

2.3.1 Time Domain Correlation 

Perhaps the most straight-forward method of evaluating the difference between two signals is 

time domain cross correlation. In this case, the metric for baseline measurement 𝑏(𝑡) and test 

measurement 𝑠(𝑡) is 

Δ𝑇𝐷 = max
𝜏

∫ 𝑏(𝑡)𝑠(𝑡 + 𝜏)𝑑𝑡
∞

−∞

√∫ 𝑏(𝑡)2𝑑𝑡
∞

−∞
√∫ 𝑠(𝑡)2𝑑𝑡

∞

−∞

 

 

   (4) 

which is bounded between zero and unity. 
 

2.3.2 Power Spectrum Correlation 

Changes in stiffness or mass distribution due to damage in a structure are likely to result in 

changes in frequency response[1]. Such changes are captured in the power spectrum of a signal. As 

such, the second detection metric is the frequency domain correlation between the power spectral 

density (PSD) of the baseline and test measurements 
 

Δ𝑃𝑆𝐷 = max
𝜔′

∫ |𝑏̂(𝜔)|
2
|𝑠̂(𝜔 + 𝜔′)|2𝑑𝜔

∞

−∞

√∫ |𝑏̂(𝜔)|
4
𝑑𝜔

∞

−∞
√∫ |𝑠̂(𝜔)|4𝑑𝜔

∞

−∞

    (5) 

 

where 𝑏̂(𝜔) = ∫ 𝑏(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞
 and 𝑠̂(𝜔) follows similarly. 

Figure 3: Procedural flow chart for the 

statistical evaluation of structural health 

using a comparative metric between 

remote acoustic test and baseline 

measurements. This can be extended to 

an arbitrary number of test cases, 

though two were considered in this 

study. 
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2.3.3 Frequency Response Function Correlation 

If the input forcing function 𝑓(𝑡) is known, then the acoustic FRF at the array can be calculated. 

FRF’s are convenient functions as they contain the same beneficial structural frequency information 

as the power spectra, however the FRF are independent of changes or variation in the input forcing. 

The detection metric using frequency response is 
 

Δ𝐹𝑅𝐹 = max
𝜔′

∫ 𝐹𝑅𝐹𝑏(𝜔) ∗ 𝐹𝑅𝐹𝑠(𝜔 + 𝜔
′)𝑑𝜔

∞

−∞

√∫ 𝐹𝑅𝐹𝑏(𝜔)𝑑𝜔
∞

−∞
√∫ 𝐹𝑅𝐹𝑠(𝜔)𝑑𝜔

∞

−∞

    (6) 

 

where 𝐹𝑅𝐹𝑏(𝜔) and 𝐹𝑅𝐹𝑠(𝜔) are the frequency response functions computed for the baseline and 

test cases, respectively, and defined as 

𝐹𝑅𝐹𝑏(𝜔) =  |
𝑏̂(𝜔)

𝑓(𝜔)
|    (7) 

3. Results 

Metrics were computed for the receiver array at 1 meter (SRR = –7dB) from the radiating plate 

and  are  shown  in  Fig. 4. The three  batches  of  coefficients  (test case 1 to baseline,  test case 2 to  
 

   
 

   
 

 

Figure 4: Sets of histograms and Gaussian fits using the Time Domain Correlation (top), PSD 

Domain Correlation (center), and FRF Correlation (bottom) at 1 m range. Enhanced views of the 

Test Case 2 (corner unclamped) and baseline (fully clamped) histograms are shown to the right. 

Value of Computed Metric 

Metric − 𝚫𝑻𝑫 

Metric − 𝚫𝑷𝑺𝑫 

Metric − 𝚫𝑭𝑹𝑭 
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baseline, and baseline to baseline) were binned into three histograms, and plotted on the same 

abscissa. These results can be assessed by the fact that histograms that are more greatly separated, 

correspond to better detection performance, i.e. there is little chance of mischaracterizing a test case 

for a baseline case (type I error) or vice-versa (type II error). The absolute location of the 

histograms on the abscissa is also important. While the relative separation between baseline and test 

case histograms are necessary for evaluating detection performance, using a metric that results in a 

baseline histogram that is very near unity is also beneficial in that it may eliminate the need to 

collect baseline measurements at all. For example, when using the  Δ𝑇𝐷 metric, it is clear that some 

knowledge of the system is necessary, otherwise a user might erroneously claim that a test 

consistently resulting in Δ𝑇𝐷  = 0.8 is suspected unhealthy, even though it lies squarely in the 

baseline histogram, as shown at the top of Fig. 4, and is not representative of plate-edge change. 

Conversely, using the Δ𝑃𝑆𝐷  or the Δ𝐹𝑅𝐹  metrics, any test yielding a value less than 0.98 is very 

likely suspect for plate edge unclamping or some other mechanical change. 

 For comparison, this procedure was repeated without applying STR to the array data. Two 

additional approaches were considered, conventional spherical wave beamforming, and simply 

using no post-processing with just a single receiver. Results of these tests using the Δ𝑇𝐷 metric are 

shown in Fig. 5. The significant overlapping of the baseline and test case 2 histograms indicate that 

neither method performed as well as STR in differentiating the corner unclamped and fully clamped 

cases. Similar results were found using the Δ𝑃𝑆𝐷 and Δ𝐹𝑅𝐹  metrics with the alternative methods. 

These findings indicate that the implementation of STR aids in reducing variability of the compared 

signals due to reverberation, thereby making variability due to mechanical changes in the plate 

apparatus more detectable. 
 

 

 
Figure 5: Sets of histograms and Gaussian fits using the Time Domain Correlation metric on a 

single unprocessed receiver (top) and a conventional beamformer output (bottom). 

 

 Additional results using STR were further quantified by fitting the histograms with normal 

distributions. Given that each fit has an associated mean 𝜇 and standard deviation 𝜎, a detection 

index 𝑑 can be defined 

𝑑 =  
𝜇𝑏 − 𝜇𝑠
𝜎𝑠

    (8) 

 

Value of Computed Metric 

Metric − 𝚫𝑻𝑫 

Metric − 𝚫𝑻𝑫 
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where subscripts 𝑏 and 𝑠 correspond to baseline and test case, respectively. Given that the standard 

deviations of the distributions are of similar size, the detection index acts as a measure of 

resolvability between two distributions and is a convenient metric for detection performance[14]. 

Values of 𝜇𝑏 and 𝑑 are tabulated for each detection metric for at three array ranges in Table 1.  

 

 
 

Table 1: Mean baseline value and detection indexes for each detection metric. Tests 

were performed with the receiver array at 1 m, 2 m, and 3 m from plate center. 

 

4. Summary and Conclusions 

Remote acoustic array measurements were shown to be effective in detecting mechanical 

changes in a vibrating plate in a reverberant laboratory using a blind deconvolution algorithm. 

Using synthetic time reversal, estimates of the plate’s acoustic signature were computed from raw 

array recordings corrupted by unknown multipath and reverberation. These reconstructed signals 

were then used to classify the vibrating plate as either changed or unchanged, using either 

correlation between the time series, PSDs, or Frequency Response Functions as detection metrics. 

All three metrics were effective in discriminating a fully clamped plate from a plate with a single 

clamp disengaged. Of these metrics, correlation of the Frequency Response Function was found to 

be the best option both in its ability to distinguish between baseline and test cases and the near-unity 

values for baseline-baseline comparisons. While Frequency Response Functions were found to be 

better than time series and PSDs in detecting changes, the metric necessitates knowledge of the 

input forcing into the structure. While in some cases input forcing could be measured or estimated – 

for example, vibrations due to cyclical loading of a bearing or forces from the prime mover on a 

shipping vessel – in general it is not known. In lieu of knowledge about the input forcing, using the 

signal PSDs was also an effective metric. Additionally, frequency based approaches feature the 

potential benefit of independence from signal phase, meaning that they would likely be promising 

for applications where uncorrelated, broadband noise-like input forcing drives the vibration. 
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