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1 INTRODUCTION

The active control of vibrating structures is a rapidly developing field of research [1].
Hydraulic. piezoelectric, electromagnetic. magnetosrrietive or other actuators provide
secondary sources of vibration which are controlled to minimise structural vibration at a
number of points or possibly to minimise radiated sound power [2}. In using linear
feedforward control methods it is assumed that vibration amplitudes are small so that the
structure (including the actuator) is linear and motion introduced by the secondary actuator is
superposed with the primary disturbance. In practice, however. nonlinear distortion may arise
due to non-ideal actuator characteristics (eg saturation at high amplitudes, hysteresis in
magnetostrictive devices) or to nonlinear coupling between different pans of the structure (eg
frictional damping at joints). This paper presents two approaches to the active control of
nonlinear structural sySIems:

(1) for harmonic disturbances. a frequency-domain controller which synthesizes the
optimum input waveform driving the secondary actuator to overcome the nonlinearity
and minimise vibration at a chosen location on the structure;

(2) for random excitations, a neural network controller which approximates the inverse
of the system under control.

A real-time frequency-domain controller has been constructed and applied to overcome the
inherent hysteresis of a magnetostricdve actuators Attenuation of harmonic disturbances up to
3kHz has been demonstrated.

2 FREQUENCY-DOMAIN CONTROL OF HARMONIC DISTURBANCES IN A
NONLINEAR STRUCTURAL SYSTEM

2.1 Control scheme
Figure 1 shows a scheme for feedforward control of a nonlinear dynamic structure with
harmonic excitation. The nonlinear structure considered is assumed to be non-chaotic and
dissipative: a structure for which a periodic disturbance produces a periodic response at the
same frequency (no subharmonics). It is further assumed that the so'ucture is subject to a
periodic excitation (from a rotating machine. for example) and that this excitation d(t) can be
linearly superposed with the nonlinear system output y(t) to form the measured error e(t).

Assuming the disturbance is sinusoidal the output y(t) of the nonlinear system is required to be
as nearly as possible a sine wave at the same frequency and opposite phase to the disturbance
d(t). so that when they are superposed the error e(t) is To achieve this the input
u(t) to the nonlinear plant is required to be an appropriate non-sinusoidal periodic waveform,
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Figure 1: Scheme for control of harmonic vibration in
nonlinear structure

whose form will be identified by adapting the controller coefficients. The controller

synthesizes this waveform from its harmonics. Of course. there are many nonlinear systems

which are incapable of generating a sinusoidal output whatever their input but in this control

scheme the aim is to obtain the closest approximation by minimising mean squared error. the

chosen cost function.

 

The reference signal is assumed to be at the same frequency as the disturbance (eg engine

rotation rate) and from it the controller generates a full range of harmonics. Both the in-phase
and quadrature components are required. Controller coefficients w , v.1 (q = 0.1,2,.,.Q) define
the magnitude and phase of each harmonic. The coefficients are a pted by gradient descent.

However. use of the gradient descent method is complicated by the fact that the controller

error is not available: it is the error between the desired and actual output of the controlled

system (the ‘plant') which is measured. In deriving the appropriate form of the steepest descent
algorithm it becomes clear that a model of the plant is required.

2.2 Coefficient adaptation by steepest-decent algorithm
The cost function J to be minimised is chosen to be mean squared error:

r
1% rein) dt (2.1)
P :rp/z

where TI, is the period of the fundamental disturbance d(t). The error e(t) is the sum of the

disturbance and the output y(t) of the nonlinear system Representing e(t) by its Fourier series:

a II

a: no

329 + Elapcosmt) + szsincpmoi) (2.2)e(t)
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The cost function can then be written (by Parseval's theorem) as

2 °° 2 “‘2
J =¥~+P§i§§+p§l2§ (2.3)

The steepest descent algorithm to update the qth controller coefficient wq is

. . ' aJ
Wq(l+1) = wq(1) - Haw—q (2-4)

The corresponding algorithm for v (i+1) is given when wq is replaced by vq in this expression.

The gradient al/BwQ follows by difgerentiation of (2.3):

31 a °° a °° 9a? = <25)El

ln order to use (2.4) to adapt the controller coefficients it is clearly necessary to obtain

information about the plant, that is. the partial derivatives Bafiwq , abp/Bwq and also Bap/(Wq

and asp/avg for all p and q These partial derivatives describe the frequency-domain

characteristics of the nonlinear system under control. For example. Bap/3wc1 is the sensitivity

of the pth in-phase harmonic component of the error signal to the qth in-phase harmonic

component of the input. If the plant were linear. it would clearly be the case that each

hannonic applied at the input (2g wq) would affect only the corresponding frequency at the

output (aq and bq). All the cross-terms would be zero. and the fin q and other terms would

form diagonal arrays. However for nonlinear systems all the pamal derivatives are. in general,

nonzero. These partial derivatives vary with the magnitude of each wq and v‘1 (the operating

point) as well as with frequency. .

3 SIMULATION STUDY: CONTROL OF BACKLASH FOLLOWED BY LINEAR

DYNAMICS

By way of example. the ‘plant‘ has been taken to be a function representing a backlash (Figure

2) followed by a pure delay and short first-order lag (time constant 0.03s). The delay was

chosen to introduce a phase lag of 108 degrees at the chosen fundamental frequency, sufficient

to destabilise the coefficient adaptation process if no account had been taken of the plant

characteristics. The fundamental disturbance frequency was arbitrarily chosen to be 1 Hz in

this example.

The partial derivatives representing the plant frequency-domain characteristics were

approximated, by constants. obtained as best fits to the slope of the surfaces

ap(wl,w2,..w V1.V2...VQ) etc over a practical range of the wq and vq coefficients. With these

values fixed e control was allowed to run from zero initial conditions (wq=v =0. q=0.l,..Q).

The controller coefficients were adapted using the steepest descent algorithm qn (2.4) above.

Tire transients in the controller coefficients are shown in Figure 3(a); the final waveforms for

the input and output of the plant are shown in Figure 30)). In Figure 3(a) it is seen that the
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Figure 2: Characteristic of backlash nonlinearity

final controller waveforms after 300 periods contain the odd harmonic components (w1. w3.
w5) but not the even components. This reflects the symmetry of the backlash nonlinearity.

Figure 3(b) shows the waveform synthesized by the controller along with the sinusoidal
disturbance and plant output. The plant output has been inverted to allow comparison with the
disturbance. The controller output shows a sharp rise or fall at the point in the waveform when
it is required to cross the backlash function rapidly and maintain a smooth output. The
residual error between d(t) and y(t) reflects the fact that only 5harmonics were used in the
controller. a larger number of harmonics would give a better match and hence a lower error.

In practice the coefficient adaptation remained stable in this case even if the partial derivative
arrays [Bap/3wa etc were constrained to be diagonal arrays, indicating that a linear plant
model would be an adequate approximation in applications of this type; however, more severe
nonlinearities (such as saturation) with stronger cross-coupling of harmonics required the full
array of partial derivatives to be estimated in order to maintain stability [3].

4 APPLICATION: ACTIVE CONTROL OF HARMONIC VIBRATION USING A
MAGNETOSTRICTIVE ACTUATOR

4.1 Magnetostrictive actuators
A nonlinear problem of particular interest is the active control of structural vibration using
secondary actuators made from Terfenol-D. Terfenol-D is a highly magnetostrictive alloy of
iron, terbium and dysprosium developed at the US Naval Surface Warfare Centre [4]. The
material increases in length by upto about 1500 ppm in a magnetic field. Substantial forces
are developed if the material is constrained. Actuators using this effect show promise for
active control of vibration in structures. However the length changes in Terfenol-D are not
linearly related to the applied magnetic field: there is hysteresis due to the magnetic character
0; the material. Thus sinusoidal input variations produce periodic but nonsinusoidal strain
c anges.
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  Figure 3: Attenuation of 1 Hz sine wave of unit amplitude using frequency-
domain controller acting through backlash with dynamics (Figure 2)
(a) movement of in-phase controller coefficients from zero initial

condition:
(b) waveforms after adaptation: disturbance d(t) (solid line).

controller output u(t) (dashed) and inverted backlash
output -y(t) (dotted)

 

  4.2 Scheme for real-time control -
A set of routines has been written in the 'C‘ language to implement real-fime control of
harmonic disturbance using a magnetostrictivc actuator. The routines are written for an IBM-
compatible PC with a Loughborough extension board carrying a Texas Instruments
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TMSS20/C30 digital signal processor. The control strategy used is that outlined in Section 2.
A frequency-domain model of the plant (ie the actuator. structure under control and attached
error accelerometer) is needed for the algorithm and is identified in a separate learning phase.

The experimental results are similar to those obtained in the simulations outlined above.
Because the excitation is periodic. the waveform need not be updated every cycle and the
fundamental frequency can be as high as 3 kHz with do and 7 harmonics under control.

5 CONTROL OF NONLINEAR STRUCTURAL SYSTEMS USING NEURAL
NETWORKS

5.1 Control strategy '
In active vibration control it is sometimes possible for nonlinear actuators to be linearised by
local feedback. However in cases where this is not possible (eg the nonlinearin is distributed
round the structure) it may still be possible to implement feedforward active vibration control
by passing the reference signal through a nonlinear adaptive controller which models the
inverse nonlinear response of the plant This Section considers the possible use of neural
networks for this purpose.

The use of neural networks for feedforward control of nonlinear systems has been considered
by a number of writers [5.6]. A central difficulty with such an approach. as illustrated in
Figure 4, is that the error at the output of the neural controller is not available for weight
adjustment using in the backpropagation algorithm because of the presence of the nonlinear
plant. Nguyen and Widrow [5] proposed that a separate neural model of the nonlinear plant be
identified first and that this could be used as a channel for the backpropagation of errors to the
controller. When trained. the controller approximates to an inverse model of the nonlinear
plant.

Disturbance
/ d(n)

Reference
Signal Neural

controller

/

  

   

 

  

  

neural
model of
plant

 

  

Figure 4: Coefficient adaptation for a neural network controller
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Several different forms of neural network have been devised [7]: they include the multilayer
perceptron (MLP) network. the radial basis function network and the B-spline network [8]. It
is necessary to choose an architecture which is appropriate for the system under control. The
backlash function discussed earlier lends itself to description by a recurrent MLP network: it
can be well-represented by a two-layer MLP network with just two inputs and two hidden
units, one of the inputs being the network output at the previous time-step, (Recurrent
networks are those in which signals are fed back from higher layers to lower layers in the
network in addition to the normal feedforward connections.)

The neural controller and model are also required to be capable of representing the dynamics
(or the inverse dynamics) of the system to be controlled. The basic feedforward MLP network
is simply a static mapping from inputs to outputs. but a number of ideas have been advanced
for representing dynamic systems. These include the time delay neural network (TDNN) [9] in
which an input time series is passed through a tapped delay line from which past values can be
obtained and presented as separate inputs to the network. Other writers have suggested
incorporating dynamic characteristics into each node of the network [10.11]. Recurrent
networks also have dynamic properties if the output is delayed by one or more time-steps
before being fed back to the input For modelling problems in structural dynamics recurrent
networks have significant advantages because they require relatively few weights. On the
other hand. a TDNN model of a structural system having a few lightly-damped modes (and
thus a long ringing response) is likely to need a long tapped delay line with a correspondingly
large complement of weights to be identified. Recurrent MLP networks have the disadvantage
that they are difficult to train because the backpropagation algorithm cannot be used directly.
A possible option is the RTRL (real-time recurrent learning) algorithm of Williams and Zipser
[l 2] .

 

  

      
  

 

    

   
 

Fortunately it is not necessary for the system model to be strictly recurrent when it is only used
to update weights in a control scheme. It is possible to use past values ofthe actual plant
output as inputs to the neural model instead of past outputs of the model itself, as shown in
Figure 5. This form of model is discussed by Hunt and Sbarbaro [13] and is similar to the
'series-parallel' model of Narendra and Parthasarathy [6]. It is similar to the equation-error
identification method for linear systems discussed, for example. by Norton [141. With this
modification the model can be trained by the backpropagation technique.

  Figure 5: Neural model of nonlinear plant using the plant
output as an input to the neural model
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5.2 Control example
By way of illustration. this approach has been applied to the case of a simple backlash function

with no dynamics. The disturbance to be attenuated at the backlash output was a narrow-band

random noise signal. The disturbance was also presented to tire neural controller as a reference

signal. Figure 6(a) shows the output of a feedforward neural model with two hidden units and

two inputs: u(n) and y(n-1). lts output is compared with the output of the backlash itself.

which it models reasonably well.

After the weights in the neural model had been adapted using the backpropagation algorithm

they were fixed while a neural controller was trained. The controller was a feedforward net

with two inputs. d(n) and d(n-l), and two hidden units whose weights were also adapted using

the backpropagation algorithm. Figure 6(b) shows the controller output and also compares the

controlled backlash output with the disturbance (inverted to allow comparison). The weights

of both networks were held constant at their fully-trained values for this run. When the

disturbance signal changes direction. a jump in controller output is required to maintain a

smooth output from the backlash function. Such a signal appears to be efficiently generated by

the simple feedforward controller used here. Further work is in hand to develop time-domain

neural controllers for dynamic nonlinear systems encountered in practice.

6 CONCLUSIONS

The Paper has presented a frequency-domain approach to the active control of nonlinear

systems under periodic excitation. The feedforward controller adapts to synthesize the

appropriate periodic waveform required at the nonlinear system input in order to cancel a

sinusoidal disturbance. Adaptation of the controller coefficients requires an array of partial

derivatives which express the sensitivity of each harmonic of the nonlinear system output to

each harmonic of the input. This array is obtained as a best fit in a chosen operating range.

Real-time control of a sinusoidal disturbance using a nonlinear magnetostrictive actuator has

been demonstrated using this approach. The fundamental frequency could be varied up to 3

kHz with do and 7 harmonics under control. The strength of this frequency-domain technique

is that no extra complexity is introduced by the dynamics of the system under control. The

plant dynamics are implicitly incorporated in the frequency-domain description which is

expressed by the four arrays of sensitivity derivatives.

Time-domain neural networks also show promise for control of nonlinear structural systems

but an appropriate neural structure must be chosen to represent the structural dynamics without

allowing the network size to become excessive. Recurrent networks havebeen found to be

very efficient models of backlash behaviour. and simple feedforward networks with memory

have beenfound to be able to effectively compensate for backlash behaviour when used as

feedforward controllers.

m
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Figure 6: (a) Neural model of backlash function. Narrowband random noise
d(n) (solid line) is applied to both a backlash funcu'on of unit
width (output y(n)) and a feedforward neural model with fixed
weights (output 9(n))

(b) Attenuation of narrowband noise d(n) (solid line; shown inverted)
using ageedforward neural net acting through a backlash function of
unit wi th.
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