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1. INTRODUCTION

in this paper we present a technique for calculating the vibration response of damped panels when forced
by a line input. The damping that will be considered here is provided either by radiation into an adjacent
acoustic medium (including porous media) or by a damping treatment applied to the panel. or both. It is
well-known that formal solutions to problems of this sort are easily obtained using wavenumber
transform techniques as outlined in recent books by lunger and Feit [l] and Fahy [2]. However. the
wavenumber domain solution must then be inverse transformed to obtain the spatial response. This
inversion may be performed analytically in only the simplest of drcumstances. in this paper it will be
shown that for damped panels. the inversion integral may be evaluated efficiently and "exactly" by using
the Fast Fourier Transform (FFI') algorithm to evaluate the Inverse Discrete Fourier Transform (lDFl').
The use of this technique will be demonsuated by calculating the damping effect of finite depth layers of
porous media when they are confined between a panel and a hard surface.

Line—excited panels loaded by an acoustic half-space have been studied extensively: see. for example.
Morse and Ingard [3]. Nayak [4]. Kellie and Peng [5]. Feit and Liu [6). lnnes and Crighton [7] and Seren
and Hayek [8]. In each case. the differential equation representing the single frequency. transverse
displacement of the panel is Fourier trartsfonned in space to yield an algebraic relation between the input
force and the panel displacement in the wavenurnber domain. To obtain the spatial response. e.g.. the
magnitude of the transverse displacement versus distance from the input force. it is necessary to inverse
transform the wavenumber solution. The inverse transform is evaluated. in principle. by integrating
from —oo to on along the real wavenumber axis. Since the required inversion integral cannot be evaluated
along this path in closed form when the panel is fluid-loaded. alternative approaches must be adopted.
Most ofien, the techniques of contour integration are used; by anappropriate choice of integration
contour and asymptotic forms of the integrand. approximate values for the panel displacement or
radiated sound pressure may be obtained that are valid in particular domains [3.6.7.8]. Alternatively, the
contour integral may be evaluated "exactly" by numerically inteyating along the appropriate contours
and branch cuts [4,8]. The simplest approach to inverting the integral. however. is to integrate
numerically. directly along the real axis [5.9]. Unfortunately. the latter approach cannot be used in the
absence of damping since the integrand then possesses poles on the real axis that make direct numerical
integration impossible. The poles can. however. be shifted off the real axis. if desired. by adding a small
amount of damping to the panel (by making its Young's modulus complex. for example) or by adding
damping to the fluid medium (by making the fluid wavenurnber complex) [5]. Thus. what might be
called the direct approach. i.e.. integration directly along the real axis. can usually be made to work in
practical circumstances since any realistic structure will exhibit finite damping. The potential benefit of
the direct approach is that the inversion integral may be evaluated efficienUy by using an FFI‘ algorithm
to evaluate the IDf-T. To~date. this approach has not been used to calculate panel responses. although
the H-‘I‘ has been used to calculate the sound radiation from vibrating planar surfaces: see. for example.
Stepanishen and Benjamin [10] and Williams and Maynard [l l].
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  in the work described here. we are concerned explicitly with structures other than panels loaded by a

fluid half-space: i.e.. panels that are relatively heavily damped. whether by addition of a damping

treaunent to the panel or by me action of porous materials adjacent to the panel. Our intention is to

develop a design tool that can be used to investigate multi-layer damping teatments and to establish their

relative merit. The mathematical structure of tire wavenumber solution that results in these cases is

sufficiently complex that the effort required to approximate the inversion integral by using the

techniques of contour integration may outweigh the benefits of the approach It. instead. it were decided

lo perform the contour integration numerically, the structure of the integrand may be complicated

enough that it is difficult to identify an appropriate path over which to integrate. This observation

sugge s that. when considering arbitrarily complex structures. it is only feasible to evaluate tlte integral

directly along the real axis. Fortunately. as noted above. when attention is directed specifically towards

damped structures. singularities do not occur on the real axis. thus making the direct approach

Straightfonlvard. In addition, as will be seen in the following seetion. the effect of any acoustic medium

(including many types of porous media) can be represented by a plane wave surface normal impedance.

‘The latter quantity is easily obtained for even arbitrarily complicated layered stnrctrrres [12,13]. Thus.

the final benefit of the direct approach is the ability to accommodate realistic matures of the type used

in noise control practice For all these reasons. it was decided to pursue the use of the FFT to calculate

the response of damped panels.

The theory behind the approach and its implementation is outlined in the next two sections. The use of

the technique will then be illustrated by reference to the response of a plane panel separated by a space

from a hard backing. It will be seen that the insertion of a porous material into the space has a dramatic

effect on the panel response. while. irt conuasL the addition of damping to the panel itself has a

negligible effect. This conclusion could not have beenarrived at by trn'ng conventional damping

theories.

2. THE RESPONSE OF LINE-EXCITED PANELS

The panel configurations considered here are shown in Figure I. We consider one side of the panel to be

exposed to a vacuum and the other side to be loaded by: (i) an acoustical half-wow. (ii) a finite-depth

acoustical medium backed by an acoustical halt-space having distinct physical properties. and (iii) a

finite-depth acoustical space backed by a rigid The media adjacent to the panel are refened to

here as "acoustical" since only longitudinal waves are imagined to propagate in than. As a result, these

spaces are considered to couple to the panel through a distributed normal stress. The acoustical spaces

may therefore be considered to represent either fluids or porous materials. such as fiber glass. in which

motion of the solid phase has no significant effect on the material's acoustical properties [14.15]. The

loading provided by elastic solids or elastic porous media will be considered elsewhere [16].

The response of an Euler-Bernoulli panel to a harmonic line input applied at x=0 is [l]

D3‘w(x.r)l3x‘ + m,32w(x.l)/311 = —p(;. 0.x) +1 (0500 V (l)

where: w is the transverse panel displacement. D is the flexural bending stiffness per unit width, m, is the

mass per unit area. p(x,z.r) is the acoustic pressure coupling the acoustical space to the panel.

f (r) = Fe‘”" where F is the force magnitude per unit length applied to the panel. and 5(1) is the Dirac

delta function. Equation (1) may be Fourier transformed in time to give

Dd‘W(x. myax‘ — o’m,W(x.o)= 4o. 0.00) user) (2)
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where: m is the circular frequency. and W(x.¢o) and Per. 0.0)) are the temporal Fourier transforms of
w(x.r) and p (x. OJ). respectively. Equation (2) may then be Fourier transformed in space. i.e..

(D‘f — w1m,)iV(Y. m) = —F(v.0.a>) + F (3)
where: yisthe spatial circular frequency (i.e.. the wavenumber), and W61. m) and i(y.0.tu) are the spatial
Fourier transforms of W(y,u)) and P(x. 0.0)). respectively. By introducing the mechanical impedance of
the panel. 2" = tub/(0))" — with]. and making use of the fact that —t'(uW = l7 where t7 is the time and
space transformed transverse panel velocity. equation (3) may be written more compactly as

z,r7(y.ui) = —fi(y,o.m) + F. (4)
Finally, the acousticpressure may be eliminated by use of the normal acoustic impedance of the acoustic
medium: i.e.. Z. =P(y.0.u))/V(y.or). Note that the impedance may be expressed in terms of the panel
normal velocity owing to the continuity of normal velocity at the panel surface [12]. Therefore. the
u-ansfonned panel velocity (neutralized with respect to the input force) may be written as

I7,(y.ut) = l/(Z,,+Z,) (5)

where: 17/01») = I7(y,(c)/F. The spatial response of the panel is found by inverse transforming this result
to give V/(x. or) = V(x.w)/F. If desired. the line input impedance of the panel may then be obtained from
the latter as Z,- = l/V,(0.a))..

The acoustic impedance 2.. provided by each configuration shown in Figure l is easily calculated [12].
For the acoustical half-space. Z.1 = (up/k, where p is the density of the acoustical medium.
k.=(k2 4‘)“ and k is the acoustical waventttttber. Note that if the acoustic medium is a porous
material. both It and 9 may be complex [14]. Further. when using the sign convention we have adopted
here. it is necessary that Re[lc.]. Im[lt.] 20. In the case when the loading is provided by a finite-depth
acoustical layer backed by an acoustical half»space. the acoustical impedance is

2'. =21“: - “MAO/(1 - thunk-t1)
where: zl = (cpl/kn. (2 =zz/z.. z, = mpg/k1,. k,, = (1:? —'f)”. k7. = (1;; --f)“. the subscripts land
2 denote properties of the layer and backing space. respectively. and [is the layer depth Note as before
that Rc[k.,], uni/("12 0 and Re[kz.]. Imika] 2 0. Finally, the acoustic impedance of allaycr confined
between a panel and a hard backing is Z, = r2‘ cot M where Z, = tap/lg. and all other parameters are as
defined in connection with the acoustical half-space.

‘ 3. DISCRETE IMPLEMENTATION

The spatial response of the panel is found by taking an inverse transform of equation (5):

V1033) = (1I2n) f l7,(1.w) 2"de . (6)

When approximated as a finite sum. equation (6) can be written as

- LIZ - .
v,(kAz. (D) = (llLAx) )3 V,(1A1.tu)e'2"'*"- (7)

I—Lrlol

where: Axis the spatial sampling interval (equal to 21W, where y, is the spatial sampling frequency). Ay
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is the spatial frequency resolution (equal to y,/L). and L is the transform length. By making use of the
implied periodicity of a sampled signal of finite duration [l7]. equation (7) can be rewritten as:    

“trauma/1.415%! Am) e‘m’L . (a)
1:0  Equation (3) is in the form of an [DI-T. i.e..

v,(kAz. or) =(t/Ax)lontr7,(my,m)1. (9)
and can be evaluated using an l-TT algorithm. We employ the oouvmtion that the EFF is defined as
[171;

      

 

K—l .
g(k)=ron[a(n)1=(t/K)za(n)e‘”"'" . (10)

1:0  Note that some care must be exercised when using equation (8). The wavenumber spectrum level at the
Nyquist frequency (i.e., one-half the sampling waverrurnher) must be low mush to avoid any significant
spectral truncation that can otherwise result in “ringing” in tin space domain. if necessary. high
wavenumber components may be windowed out of the wavenumber spectnun (an operation equivalent
to lowpass filtering the spatial data). The latter approach produces an effect similar to an excitation of
the structure by a force distributed over a finite width in the x-direction. in addition. the wavenrrmber
spectrum must be sampled sufficiently oflen that all significant features are adequame resolved. This is
especially true of lightly damped structures. in which case the use of double precision calculations is
recommended. Lack of adequate sampling of the wavetrumber spectrum is usually indicted by a
spurious oscillation of the spatial response

  

  

    

   

  

 

   
   

              

4. RESPONSE OF A PANEL BACKED BY A FlNITE-DEP'I‘H SPACE

To illustrate the usefulness of the approach described above. we will comider the response of a panel
separated from a hard backing by a finite-depth space. Note that a similar configuration has been studied
previously by Leung and Pinnington [18]: they considered the acoustical medium to be locally reacting
rather than extended reaction as we do here.

In the present case. the appropriate acoustical impedance is Z, = 12. cot k.l. The panel is imagined to be
a 0.762 mm thick sheet of aluminium and the depth of the space is 6.35 mm. The Young's modulus is
assumed to be complex in order to inmrporate panel damping [2]: i.e.. D = D..(l — in) where D,.I and r1
are both real and 11 is the loss factor. The input impedance ofthe panel has been calculated both when
the space is filled with air (at normal atmospheric conditions) and when the space is filled by a porous
material whose acoustical properties can be defined byits flow resistivity (14]. In the former case. the
wavenumber is made slightly complex to allow for losses in the alt. I.e.. k = (talcOXl + “101); in the
latter case. both the complex wavemrmber and dersity have been calculated using the semi irical
results of Delany and Barley [14]. For the wavenumber: k = 3+ its. a=0.189(mlco and
B=(tulca)(l +0.0978f‘°7°°) where pa and co are the which! density and speed of sound of air.
respectively, f = (pnf/c). /is the frequency (in Hertz) and c is the flow resistivity. The complex density
may be calculated as p=Z£Ito where Z is the' characteristic impedance of the porous material. and
z = R + or where R = pocofl +0.057lf'°'7") and x =0.0B70pgcof'“m. The calculations ptwented
below have been made using a spatial sampling frequency of 1000 rad/m and transform lengths of4096
points.
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. Figure 2 shows the input impedance of the panel when air is assumed to fill the space between the panel
and the hard backing; the panel loss factor was assumed to be 0.05. The major feature in this result is the
mass~air-mass resonance [2] visible near 500 Hz. This effect is normally attributed to the mass of the
panel resonating against the stiffness of the air u-apped between the panel and the hard backing [2].
Simply increasing the panel loss factor has very little effect on this resonance. presumably since the
frequency of interest is well below the panel‘s critical frequency (approximately 16 kHz). Figure 3

. - shows the input impedance when the loss factor is increased to 0.5: some effect of the damping is visible.
but the net result is a very small improvement Thus. application of a damping treatment to the panel
would have little effect in this instance. However, if the space is filled with a porous material. the
resonance may be effectively damped. Figure 4 shows the input impedance when the porous medium
flow resistivity is 1: 103 MKS Rayls/m while Figure 5 shows the result when the flow resistivity is
raised to 101 10’ MKS Rayls/m. Note that these flow resistivities fall towards the lower end of the
range of fiber glass flow resistiviu‘es normally encountered in practice. It is evident that the addition of
the fiber glass has caused the resonance to be effectively damped. 'l'he'effectiveness of the fiber glass in
reducing the structural response is evident from a comparison of Figures 6 and 7; both figures show the
magnitude of the normalized transverse velocity. lV,(x.o)) | . planed versus frequency and distance from
the input force. Figure 6 shows the response when the space between the panel and the hard backing is
air-filled and the panel has a loss factor of 0.5, and Figure 7 shows the response when the space is filled
with a porous material having a flow resistivity of 101 10’ MKS Rayls/tn. The superiority of the lunar

, treatment is obvious. -

5. CONCLUSIONS

In this paper we have presented a method whereby the FFT algorithm may be used to predict the
tesponse of line-excited, damped panels. The technique provides a versatile and efficient alternative to
classical methods of predicting the response of fluid-loaded panels. In addition, it has been shown that
the panel loading may be accounted for by using an acoustical impedance. The latter quantity is easily
calculated for a wide variety of layered treatments. The use of the technique has been demonstrated in a
configuration in which damping provided by a layer of porous material adjacent to the panel proved
much more effective at suppressing a resonance than the conventional approach of adding damping to
the panel. It is expected that the present approach will prove useful in studying a variety of multi-
element damping treaunents that are not easily modeled using conventional damping theory. Future
work will be directed at the extension of this technique to accommodate panel loadings provided by
elastic solids and elastic porous materials.
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Figure 1. Panel configurations: G) acoustiml hall-5pm. (ii) finite-depth menial medium hacked by an

acoustical half-space. (iii) finite-depth main] space backed bye riy'd surface.
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Figure 7. Normalized uansverse velocity of panel: pox-mus material in the space between the panel and the

hard backing (n = 0.05. a =10x10’ MKS Ray]: In).
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