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1. INTRODUCTION

In this paper we present a technique for calculating the vibration response of damped panels when forced
by a line input. The damping that will be considered here is provided either by radiation into an adjacent
acoustic medium (including porous media) or by a damping treatment applied 1o the panel, or both, It is
well-known that formal solutions to problems of this sont are easily obtained using wavenumber
transform techniques as outlined in recent books by Junger and Feit [1] and Fahy [2). However, the
wavenumber domain solution must then be inverse transformed to obtain the spatial response. This
inversion may be performed analytically in only the simplest of circumstances, In this paper it will be
shown that for damped panels, the inversion integral may be evaluated efficiently and "exactly” by using
the Fast Fourier Transform (FFT) algorithm to evaluate the Inverse Discrete Fourier Transform (IDFT).
The use of this technique will be demonstrated by calculating the damping effect of finite depth layers of
porous media when they are confined between a panel and a hard surface.

Line-excited panels loaded by an acoustic half-space have been studied extensively: see, for example,
Morse and Ingard [3], Nayak [4], Keltie and Peng [5], Feit and Liu [6), Innes and Cr ghton [7] and Seren
and Hayek [8). In each case, the differential equation representing the single frequency, transverse
displacement of the panel is Fourier transformed in space to yield an dlgebraic relation between the input
force end the panel displacement in the wavenumber domain. To obtain the spatal response, e.g., the
magnitude of the transverse displacement versus distance from the input force, it is necessary o inverse
ransform the wavenumber solution. The inverse transform is evaluated, in principle, by integrating
from —ee to oo along the real wavenumber axis. Since the required inversion integral cannot be evaluated
along this path in closed form when the panel is fluid-loaded, alternative approaches must be adopted.
Most often, the techniques of comour integration are used; by an appropriate choice of imtegration
contour and asymptotic forms of the integrand, approximate values for the panel displacement or
radiated sound pressure may be obtained that are valid in particular domains [3,6,7.8). Altematively, the
contour integral may be evaluated “exaculy” by numerically integrating along the appropriate contours
and branch cuts [4,8]. The simplest approach 10 inverting the imegral, however, is to integrate
numerically, direcily along the real axis [5,9]. Unfortunately, the latter approach cannot be used in the
absence of damping since the integrand then possesses poles on the real axis that make direct numericat
integration impossible. The poles can, however, be shifted off the real axis, if desired, by adding a smail
amount of damping to the panel (by making its Young's modulus complex, for example) or by adding
damping w© the fluid medium (by making the fluid wavenumber complex) [5). Thus, whal might be
called the direct approach, i.e., integration directly along the real axis, can usually be made to work in
practical circumstances since any realistic structure will exhibit finite damping. The potential benefit of
the direct approach is that the inversion integral may be evaluated efficiently by using an FFT algorithm
1o evaluate the IDFT. To-date, this approach has not been used io calculate panel responses, although
the FFT has been used to calculate the sound radiation from vibrating planar surfaces: see, for example,
Siepanishen and Benjamin {10] and Williams and Maynard [11).
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In the work described here, we are concemed explicitly with structures other than panels loaded by a
fluid half-space: ie., panels that are relatively heavily damped, whether by addition of a damping
treatment 1o the panel or by the action of porous materials adjacent to the panel. Our intention js to
develop a design 100l that can be used to investigate multi-layer damping teatments and to establish their
relative merit, The mathematical sructure of the wavenumber solution that results in these cases is
sufficienly complex that the effort required to approximate the inversion integral by using the
techniques of contour integration may outweigh the benefits of the approach. If, instead, it were decided
1o perform the coniour integration numerically, the structure of the integrand may be complicated
enough that it is difficult 1o identify an appropriate path over which 1o imegrate. This observation
suggesis that, when considering arbitrarily complex structures, it is only feasible to evaluate the integral
directly-along the real axis. Fortunately, as noted above, when attention is directed specifically towards
damped structures, singularities do not occur on the real axis, thus making the direct approach
straightforward. In addition, as will be seen in the following section, the effect of any acoustic medium
(including many types of porous media) can be represented by a plane wave surface normal impedance.

“The laner quantity is easily obtained for even arbitrarily complicated layered structures [12,13). Thus,
the final benefit of the direct approach is the ability to accommodate realistic structures of the type used
in noise control practice. For all these reasons, it was decided to pursue the use of the FFT to calculate
the response of damped panels.

The theory behind the approach and its implementation is outlined in the next two sections. The use of
the technique will then be illustrated by reference to the response of a plane panel separated by a space
from a hard backing. It will be seen that the insertion of a porous material intp the gpace has a dramatic
effect on the panel response, while, in contrast, the addition of damping to the panel itself has a
ncgligible effect. This conclusion could not have been arrived at by using conventional damping
theories.

2. THE RESPONSE OF LINE-EXCITED PANELS

The panel configurations considered here are shown in Figure 1. We consider one side of the panel to be
expased 1o 8 vacuum and the other side to be loaded by: (i) an acoustical half-space, (if) a finite-depth
acoustical medium backed by an acoustical half-space having distinct physical properties, and (ili) a
finite-depth acoustical space backed by a rigid surface. The media adjacent to the panel are referred 10
here as "acoustical” since only longitudinal waves are imagined to propagate in them. Asa result, these
spaces are considered to couple to the panel through a distributed normal stress. The acoustical spaces
may therefore be considered to represent either fluids or porous materials, such as fiber glass, in which
motion of the solid phase has no significant effect on the material’s acoustical properties [14,15). The
loading provided by elastic solids or elastic porous media will he considered elsewhere {16).

The response of an Euler-Bernoulli panel to a harmonic line input applied at x=0is [1]
DA wix,1¥ax* + mPw (x,NR3* = —p(x, 0.2) + f (1)5(x) ‘ m

where: w is the transverse panel displacement, D is the flexural bending stiffness per unit width, m, is the
mass per unit area, p(x,zf) is the acoustic pressure coupling the acoustical space to the panel,
£(1)=Fe™™ where F is the force magnitude per unit length applied 1o the panl, and 8(x) is the Dirac
delta function. Equation (1) may be Fourier transformed in time to give

DI*W (x, 0yax* — wim,W(x, 0} =—P(x,0,0) + F5(x) @)
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where: @ is the circular frequency, and W(x, w) and P (x, 0,0} are the temporal Fourier transforms of
w({x.1) and p (x, 0.2), respectively. Equation (2) may then be Fourier transformed in space, i.c.,

(DY — 0Pm, Wiy, ) = -P(y,0,0) + F £3)

where: ¥ is the spatial circular frequency (i.e., the wavenumber), and W(y, ©) and };(y. 0,w) are the spatial
Fourier transforms of W(y,w) and P (x, 0,®), respectively. By introducing the mechanical impedance of
the panel, Z, = i[(D/w)Y' — wm,), and making use of the fact that —i@W = V where V is the time and
space transformed transverse panel velocity, equation (3) may be written more compactly as

Z,V(v.0)=-P(1.0,0) +F. (4)

Finally, the acoustic pressure may be eliminated by use of the normal acoustic impedance of the acoustic
medium: i.e., Z, = P(y,0,0)/V(y,@). Note that the impedance may be expressed in terms of the panci
normal velocity owing to the continuity of normal velocity at the panel surface [12]. Therefore, the
transformed panel velocity (normalized with respect to the input force) may be written as

VAT.@) = 16Z,+2,) (5)

where: l7,(7,co) = ﬁ(y. W)/F. The spatial response of the panel is found by inverse transforming this result
10 give Ve(x, w) = V(x,@)F, If desired, the line input impedance of the pane] may then be obtained from
the lanter as Z; = W0, w)..

The acoustic impedance Z,, provided by each configuration shown in Figure 1 is easily calculated {12].
For the acoustical half-space, Z,=wp/t, where p is the density of the acoustical medium,
ky =k ~¥")" and k is the acoustical wavenumber. Note that if the acoustic medium is a porous
material, both £ and p may be complex [14). Further, when using the sign convention we have adopted
here, it is necessary that Re[k,), Im[k,] 2 0. In the case when the leading is provided by a finite-depth
acoustical layer backed by an acoustical half-space, the acoustical impedance is

Z, =Z ({2 ~ ftank, 1 — iytank, f)

where: Zy = 0py k1, §2 =Z2/Zy, Zy = Opalkyy, kyy = 6 —P¥*, kx = (6 = )%, the subscripts 1 and
2 denote properties of the layer and backing space, respectively, and / is the layer depth. Note as before
that Re[ky,], Im[k),] = O and Refkx,}, Im{k,] 2 0. Finally, the acoustic impedance of a }aycr confined
between a panel and a hard backing is 2, = iZ, cot &,/ where Z, = wp/k,, and all other paramelers are as
defined in connection with the acoustical half-space.

_ 3. DISCRETE IMPLEMENTATION
The spatial respbnse of the panel is found by taking an inverse transform of equation (5):

Vex.w) = (112n) | Viy, @) e " dy . (6)
When approximated as a finite sum, equation (6) can be wrinen as
R 2 - .
Vikax, )= (I1LAx)  F, V(I Ay.w) e/ 204 6}
J==Lil+]

where: Ax is the spatial sampling interval (equal to 2r/y, where ¥, is the spatial sampling frequency), Ay
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is the spatial frequency resolution {equal to ¥,/L), and L i the transform length. By making use of the
implied periodicity of a sampled signal of finite duration [17), equation (7) can be rewritten as;

V/kAx, m}=(l!LAx)L£V}(I Ay,0) e ®
i=0 .

Equation (B) is in the form of an IDFT, i.e.,
V(kAx, ) = (I/Ax) IDFT [Vl Ay, 0)), ®

and can be evaluated using an FFT algorithm. We employ the convention that the IDFT is defined as
{17

X-1 .
g (k) = IDFT[G (n)] = (LK) T, G (n) e 7™ X 10)
=0

Note that some care must be exercised when using equation (8). The wavenumber spectrum level at the
Nyquist frequency (i.¢., one-half the sampling wavemumber) must be low enough to avoid any significant
spectral truncation that can otherwise result in "ringing” in the space domain. If necessary, high
wavenumber components may be windowed out of the wavenumber spectrum (an operation equivalent
to lowpass filtering the spatial data). The laner approach produces an effect similar 10 an excitation of
the structure by a force distributed over a finjte width in the x-direction. In addition, the wavenumber
spectrum must be sampled sufficiently often that all significant features are adequately resolved. This is
especially true of lightly damped structures, in which case the use of double precision calculations is
recommended. Lack of adequate sampling of the wavenumber spectrum is usually indicted by a
spurious oscillation of the spatial response.

4. RESPONSE OF A PANEL BACKED BY A FINITE-DEPTH SPACE

To illustrate the usefulness of the approach described above, we wilt consider the response of a panel
separated from a hard backing by a finjte-depth space, Note that a similar configuration has been studied
previously by Leung and Pinnington [18]; they considered the acoustical medium to be locally reacting
rather than extended reaction as we do here.

In the present case, the appropriate acoustical impedance is Z, = iZ, cot k1. The panel is imagined 1o be
4 0.762 mm thick sheet of aluminium and the depth of the space is 6,35 mm. The Young's modulus is
assumed lo be complex in onder to incorporate pane! damping [2]: i.e., D = D,(1 - in)) where Dy, and 1
are both real and 7 is the loss factor. The input impedance of the panel has been calculated both when |
the space is filled with air (at normal atmospheric conditions) and when the space is filled by 2 porous
material whose acoustical properties can be defined by its flow resistivity [14]. In the former case, the
wavenumber is made slighily complex to allow for losses in the air, i.e., & = (WecgX1 +/0.01); in the
latter case, both the complex wevenumber and density have been caleulated using the semj irical
results of Delany and Bazley [14). For the wavenumber: & =P+ io, o=0.18%w/cq and
B = (e o)1 +0.09787 2™ where py and ¢ are the ambient density and speed of sound of air,
respectively, f* = (pof/0), fis the frequency (in Hertz) and o is the flow resistivity, The complex density
may be calculated as p=2Zk/t where Z is the characteristic impedance of the porous material, and
Z =R +iX where R = pgeo(1 +0.05717°7*) and X = 0.0870pgcof™"*. The calculations presented
below have been made using a spatial sampling frequency of 1000 rad/m and transform lengths of 4096
points,
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- Figure 2 shows the input impedance of the panel when air is assumed to fill the space between the panel
and the hard backing; the panel loss factor was assumed to be 0.05. The major feature in this result is the
mass-air-mass resonance [2] visible near 500 Hz. This effect is normally attributed to the mass of the
panel resonating against the stiffness of the air trapped between the panel and the hard backing [2].

. Simply increasing the pancl loss factor has very linle effect on this resonance, presumably since the
frequency of interest is well below the panel’s critical frequency- (approximately 16 kHz). Figure 3
. - shows the input impedance when the loss factor is increased 10 0.5; some effect of the damping is visible,
but the net result is a very small improvement. Thus, application of a damping treatment 1o the pancl
-+ would have litlle effect in this instance. However, if the space is filled with a porous material, the
resonance may be effectively damped. Figure 4 shows the input impedance when the porous medium
flow resistivity is 1x 16° MKS Rayls/m while Figure 5 shows the result when the flow resistivity is
raised to 10x 10° MKS Rayls/m. Note that these flow resistivities fall towards the lower end of the

.- range of fiber glass flow resistivities normally encountered in practice. Mt is evident that the addition of
the fiber glass has caused the resonance to be effectively damped. The effectiveness of the fiber glass in
reducing the structural response is evident from a comparison of Figures 6 and 7; both figures show the
magnitude of the normalized iransverse velocity, {Vx,w)|, plonted versus frequency and distance from
the input force. Figure 6 shows the response when the space between the panel and the hard backing is
air-filled and the panel has a loss factor of 0.5, and Figure 7 shows the response when the space is filled
with a porous maierial having a flow resistivity of 10 x 10° MKS Rayls/m. The superiotity of the larter

. treatment is obvious, - . .

5. CONCLUSIONS

In this paper we have presented a method whereby the FFT algorithm may be used to predict the
response of line-excited, damped panels, The technique provides 2 versatile and efficient aliemative 1o
¢lassical methods of predicting the response of uid-loaded pancls. In addition, it has been shown that
the panel loading may be accounted for by using an acoustical impedance. The latter quantity is casily
calculated for a wide variety of layered treatments. The use of the technique has been demonstraied in a
configuration in which damping provided by a layer of porous material adjacent 10 the panel proved
much more effective at suppressing a fesonance than the conventional approach of adding damping to
the panel. It is expected that the present approach will prove useful in studying a variety of multi-
element damping treatments that are not easily modeled using conventional damping theory. Fuire
work will be directed at the extension of this technique to accommodate panel loadings provided by
elastic solids and elastic porous materials.
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Figure 1. Panel configurations: (i) acoustical half-space, (if) finite-depth acoustical medium backed by an
acoustical half-space, (iii) Bnite-depth acoustical space backed by a rigid surface,
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Normalized Velocily 10~

Figure 6. Normalized wansverse velocity of panel: sir in the space betwoen the panel and the hard backing
m=0.5).

Normmalized Uelocity (X107%)

Figure 7. Nommalized transverse velocity of panel: porous material in the space between the panel and the
hard backing {n = 0.05, @ = 10x 10* MK Rayls/m).
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