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1. INTRODUCTION

This paper outlines some progress made towards robust sonar-invariant and gain-invariant

sea bed type classification. This work continues previous studies Pace and Gao [7], O'Brien

and Agnew [2], Beck [1], Nicholls and Beck [5].

Pace and Gao [7] used a data library collected with a 48kHz side-scan sonar system. Using

features of the power spectrum of the signals backscattered from the seabed they found a high

probability (>0.97) of correctly classifying the sea bed type as either sand. mud. clay, gravel,

stones. or rock. The values of the spectral features increase through this sequence of sea bed

types. O'Brien and Agnew [2] showed the feasibility of using these features to classify the deep

ocean seabed using 6.5kHz GLORIA side-scan data but the lack of suitably ground-truthed

data prevented further progress. Beck [1]. Nicholls and Beck [5] confirmed the conclusions of

Pace and Gao [7] using data from several sonars and noted that the spectral features offered

better prospects of classifying gravel, stones and rock than sand, mud and clay.

The previous analyses have been repeated in greater detail. Further 48kHz data was obtained

from Dr. Pace and new sonar data for higher frequencies was also examined. Of particular

interest is the question why the mud and clay types occurred out of the order expected when

considering either the granularity or acoustic hardness. Figure 2 shows 64 grey level screen

dumps of representative 128 line by 1024 pixel frames of 48kHz amplitude data from the 6 sea

bed types mud. clay, sand, gravel, stones, rock, and shows the relative granularity.

2. SPECTRAL ANALYSIS

Consider the classification of the sea bed using the received signal amplitude. a(t), of a sea

bed ensonifying sonar with a rectangular pulse. Let the signal amplitude within the ith fixed

time duration rectangular window be denoted by ai(t). The mean value of this windowed signal

amplitude is set equal to zero by subtraction of the mean within the window, ui. A window

function, w(t). is applied, the resulting signal may be written as

Qi(t) = W(i)(ai(t) - Hi) (1)

The window function used, in this analysis, is the cosine-tapered window, F. J. Harris, [4]. This

window function represents an attempt to smoothly reduce the data to zero at the window

boundaries while not significantly reducing the processing gain of the windowed transform.

The window changes smoothly from the rectangular window to the Hann window as a

parameter a varies from unity to zero. Following the analysis of Pace and Gao [7], a = 0.875 is

used. When a rectangular window, a = 1, is used the high sidelobe level, ~13dB. results in high

frequency noise being added to the log power spectrum (equation 3). Figure 1 shows a

comparison of two typical log power spectra obtained with or = 0.875 and or = 1. This noise

increases the denominator terms in the spectral features (equations 5 - 7) significantly and
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catastrophically degrades the discrimination between the sea bed types. insignificant

differences are obtained by additional tapering of the window. using the current sonar data.

A Fourier transformation is performed on this windowed amplitude. gi(t). The averaged power

spectrum is obtained by averaging n squared moduli of the resulting amplitudes at each

frequency
1‘

E“) = 2|F(gi(t)|2, i= 1,2,. . .. n I (2)
i=1

Given a suitable normalization factor. K, and a sonar-dependent scaling parameter. A (the

"stretch" parameter). the log power spectrum may be defined as

PL(f)=|og((A.P(f)lK)+1)/log(A+1) ‘ (a)

If the log power spectrum is normalized so that its total sum value is set equal to unity, the area

normalized log power spectrum is obtained

my
PNLU) = PL(f)/ J'Ptn) df (4)

0

where my is often chosen to be the digitizing Nyquist frequency. The Pace integral spectral

features, which may be visualized as the ratios of low frequency to high frequency content of

the normalized log power spectra. are

iBa {NY

Df1= IPNL(f)df/ jPNtu) df (5)
0 tea

fBa/8 fNy tea/8 iNy

Df2= jPNt(r)di / {Humor (6) Dis: jpmawr/ [Pruner (7)
o fBa o 3ta./4

where fga (< fNy) is often chosen to be the bandwidth. In practice the integrals are often

evaluated as simple summations.

It is possible to produce highly discriminating spectral features by selecting no normalization.

i.e. K = 1. in equation (3). yielding a log "power" spectrum which owes a portion of its

discrimination to the gain-dependent contribution resulting from the lack of normalization.

Pt(r) = log(AP(f) + 1) / log(A + 1) (3a)

in Pace and Gao [7], the normalization factor, K = Pmax. the maximum value of P(f). is

recommended. yielding the log power spectrum

PL(f) = log(Al3(f) IPM + 1) / Iog(A +1) (3b)

This normalization is not wholly independent of the gain. An alternative gain-invariant and

partly sonar-invariant method is to use equation 3a. but to replace equation 1 by

Eli“) = W(t)(ai(!) - Pi) / Oi (1 3)

normalizing the windowed amplitude by the standard deviation within the rectangular window.

cri, after mean value removal. Figure 3 shows PDFs of the DH feature and the corresponding
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averaged normalized log power spectra for each of these three normalizations. These use the

48kHz sidescan sonar data for the six seabed types. ass-point Fourier transforms are made

and the resultant spectra are averaged across 8 lines of data. With no normalization. equation

3a yields good discrimination between the seabed types and the ordering observed in

previous studies. namely sand. mud. clay gravel. stones and rock. Normalization via equation

3b yields similar results but with poorer discrimination. The log power spectra obtained from

the mud and clay data sets show some anomalous behaviour. possibly due to sonar self noise.
at low frequencies. This behaviour might account for the unexpected ordering of the mud and

clay data. Normalization via equations 1a. 3a yields discrimination in between the other two

results but in this case the seabed types occur in the order mud, sand, clay,gravel, stones, rock.

The choice of stretch parameter. fBa and t", have not been optimized for the new normalization.

It is likely that improved discrimination may be achieved by a suitable optimization. However

initial attempts to produce more discriminating features directly from the averaged power or log

power spectra. with the new normalization. were encouraging.

Examples of the performance of the spectral feature Df1 are shown in figures 5, 6, and 7.

These figures show comparisons of 64 grey level screen dumps of frames of amplitude data

with frames showing the feature value. Figure 5 shows results using data from a survey of a

pipeline in-a trench. with spoil banks on either side of the trench. The shadow region before
the pipe is clearly detected as reported in Nicholls and Beck [5]. Figure 6 shows an example of

discrimination of rocks on a sandy seabed. Figure 7 shows the excellent discrimination of a

gravel bank on a mud/clay seabed. A wreck in the lower right portion of this frame yields rock-
Iike values of DH.

3. COMPARISON WITH OTHER FEATURES.

Several other features have been proposed in the literature for sea bed classification

purposes. Analyses, of our data, have been performed using features derived from Co-

Occurrence MAtrices(COMA). Sum and Difference Histograms(SDH). moment statistics. and

Flank Order Statistics(FlOS). The application of COMA to sonar data was initially explored in

Pace and Dyer [6]. the results were not encouraging. The definitions given in Gotlieb and
Kreysig [3] are used in this work. Due to the need to evaluate many two dimensional matrices

COMA are. computationally. inefficient. Unser [8] introduced SDH features. which approximate

the COMA features. Results obtained from these two methods are practically identical.

Several authors have investigated the use of gain-invariant moment based statistics. e.g. Pace

and Gao [7]. Whilst the 3rd order normalized central moment, M3, yields some useful
discrimination (figure 4) the performance has been shown to be significantly inferior to that of

the spectral features. A related gain invariant feature. which does not figure prominently in the
sea bed classification literature. is the Coefficient Of Variation

COV=si/mi (10)

ROS features such as the upper deciles have been used. Figure 4 shows PDFs of the most

discrimating of these features using the 48kHz sidescan sonar data. for comparison with figure

3. COV and M3 show useful discrimination, but are much poorer discriminators than Off.

Some discriminatiOn is shown by the Mean Grey Level and the COMA Contrast features. Not

demonstrated here are the Coefficient of Concentration which shows very similar performance
to the COV and the SDH Contrast feature which shows indistinguishable performance to the
COMA Contast feature.
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In spite of these PDF’s good discrimination is often apparent for some of these features. Figure

5 which shows results using data from a survey of a pipeline in a trench presents screen dump

frames for the Mean Grey Level and the COMA Contrast features. The Mean Grey Level shows

excellent discrimination of the spoil banks beside the trench, the shadow behind the nearest

spoil bank and parts of the pipeline and its shadow. The COMA Contrast also discriminates

these details but less clearly. Apparently gain-dependent information is enhancing the

discrimination of these features.

4. CONCLUSIONS.

A new gain—invariant normalization has been introduced for the Pace spectral features. The

resultant Pace spectral features order the sea bed types mud, sand, clay. gravel, stones and

rock. Previous studies placed mud between sand and clay in this sequence. Improved

discrimination may be achievable by optimization of fBa, f“, and the stretch parameter or by

using features directly from the averaged power or log power spectra, with the new

normalization. It is confirmed that the spectral features offered better prospects of classifying

gravel. stones and rock than sand, mud and clay. Care is required in the choice of window

function. A novel gain-invariant feature. the Coefficient of Variation shows useful

discrimination. Other features. e.g. Mean Grey Level. M3, COMA or SDH Contrast. show useful

discrimination but are gain dependent. For sea bed classification when the sonar gain is

available the features MGL, Df1, COV and either M3 or SDH Contrast are recommmended.

Frequently data may be available but without any record of the sonar gain. In these

circumstances the features Df1. Df2, COV and M3 are recommended.
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Eigure 1. Effect of Window Funcflon on Average Log Power Spectrum.

Data set- SANDOB. Sand Seabed. West English Channel, 48kHz Sidescan Sonar.

a. Cosine-taper window, on = 0.875. b. Rectangular window
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figgfig, 64-Grey Level DispIay of 48kHz Sidesoan Sonar 8—bi1 Data from 6 Seabed Types.

MUDOI, M'udr CLAYOI, Clay. SANDOS, Sand.
South Baltlc Sea. Southern North Sea. West English Channel.

GHAV04. Gravel. STONOI. SIones, ROCKOZ. Rock.

West English Channel- Outer Hebrides. South Baltic Sea.
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Formulations of the Spectral leature, Df1. 6 Seabed Types, 48kHz Sidescan Sonar Data.
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igure 4.
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Figure 5. Comparison, with

Grey Level Plot of

Classification Performance

of 3 Features:

a. Spectral Feature OH.

in. Mean Grey Level, MGL,

0. Grey Level Plot, GLP.
d. Correlation Matrix,

Contrast, CMCont.

Data Set: DATA1_1, North

Sea. Sand Seabed.
Pipeline in a Trench, 50kHz

Sidescan Sonar.

(Ceils: 4 lines x 32 pixels)
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   figure 6. Example ot Classification Performance of Spectral Feature. DH.

 

Data Set: DATIMZ, 80uth West English Coast. Sand and Fleck.

I b. Dl1 (Cell Size: 4 lines x 132 pixels).

 

  

   

  

   

  
   

   

6. Grey Levet Plot.

  

  

figure 7. Example of Classification Performance of Spectral Feature, th.

Data Set: Grav01, Southern North Sea.

Gravel Bank on MudlClay with Wreck.

in. OH (Cell Size: 8 lines x 256 pixels).

  

3. Grey Level Plot.
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