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This paper introduces the application of nonlinear damping in increasing the energy (power) harvested by 

a vibration-based energy harvester (VEH). It has been reported that when nonlinear cubic damping is employed 

in a VEH, more energy is harvested, at the resonant frequency, compared to linear damping, when the base 

excitation level exerted on the support-base of the VEH is below the maximum base excitation level the VEH 

is subjected to. The maximum base excitation level commensurately causes a maximum displacement of the 

harvester mass as the VEH is limited in its size and enclosure by design. This study focuses on the analysis 

and design of a VEH using a nonlinear frequency analysis method. The concept of the output frequency re-

sponse function (OFRF) is employed to derive an explicit polynomial relationship between the harvested en-

ergy and the parameter of interest of the VEH which is the nonlinear damping coefficient. However this is 

subject to a maximum allowable displacement of the mass of the harvester. Due to this constraint, an optimi-

zation problem is posed. Based on the OFRF, an optimal nonlinear damping coefficient can be designed to 

realize a range of preferred energy levels subject to the mass displacement constraint of the VEH. 
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1. Introduction 

The theory of Energy (power) harvesting from ambient vibration involves the conversion of kinetic 

energy, also known as ambient energy, to electrical energy. The vibration-based energy harvesting 

technology has been a hot topic in recent publications with some revealing results obtained. Sources 

of vibration like wind turbulence, ocean waves, automobile motion etc. provide mechanical energy 

which can be harvested and used for powering wireless sensors, wearable electronics etc [1, 2]. Most 

of the publications in literature have literally identified two major design limitations of energy har-

vesting systems. The first limitation is that energy harvesters are designed to function at a selected 

band of frequencies hence any source of vibration with disturbances having frequencies outside this 

band is untapped hence affecting the efficiency of the harvester system. However various nonlinear 

design concepts have been reported in literature to increase the excitation frequency range over which 

the harvester system is operational [3, 4].  The second limitation is the design constraint of the mass 

displacement as the harvester mass displacement is constrained due to the device size and geometry 

[3, 4].  Most harvester systems are employed in environments or structures subjected to fairly low 

vibration amplitudes hence they are designed for resonant levels to achieve maximum performance. 

Likewise, due to its proof mass displacement constraints, the harvester system is designed for the 

maximum excitation level the proposed operational region is subjected to.  

It has been recently revealed in [5] that an introduction of a nonlinear cubic damping can extend 

the dynamic range of an energy harvester. In [5], using the harmonic balance method (HBM), the 

nonlinear energy harvester system with cubic damping was compared at resonance with a harvester 

system having an equivalent linear damper (providing same relative displacement as the nonlinear 
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harvester) and both systems were subjected to the maximum excitation level of the operational envi-

ronment and lower excitation levels. It was shown that at the maximum excitation level, both systems 

harvested same energy (power) however at lower excitation levels, the nonlinear harvester extracted 

more energy. 

  The current study focuses on the analysis, design and optimization of a nonlinear harvester with 

cubic damping using a nonlinear frequency analysis method. The concept of the output frequency 

response function (OFRF) is employed to derive an explicit polynomial relationship between the har-

vested energy (power) and the VEH parameter of interest i.e. the nonlinear damping coefficient, sub-

ject to the proof mass displacement constraint. This, as reveals, poses a constrained optimization 

problem. 

 

2. Model formulation 

The vibration-based energy harvester system considered in this study include a base-excited sin-

gle-degree-of-freedom (SDOF) mass-spring-damper system. This is illustrated in the schematic form 

as shown in Fig. 1. 

 

 
 

Figure 1: SDOF base excited VEH with nonlinear cubic damping. 

 

As seen in Fig. 1, the SDOF energy harvester system comprises a proof mass m  supported by 

vibration isolation elements which comprises a spring with stiffness k , linear and nonlinear dampers 

with damping coefficients, 1c   and 3c  respectively. 

Given a base-excitation of ( )y t  exerted on the base of the harvester which results to a relative 

displacement of ( )z t  between the mass and the base of the harvester with the assumption that the 

base-excitation is harmonic in nature with magnitude and frequency Y and  respectively, then the 

system model of the SDOF VEH can be given as 

 

 3

1 3( ) ( ) ( ) ( ) ( )mz t c z t c z t kz t my t       (1) 

 

Assuming harmonic input excitation and zero phase shift of the response, the harmonic base-exci-

tation is given by  
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 ( )y t Ysin( t)   (2) 

   

This implies; 

 3 2

1 3( ) ( ) ( ) ( ) ( )mz t c z t c z t kz t m Ysin t       (3) 

 

The average amount of energy (power) that is extracted by a damping device is given as 

 
0

1
T

avP F zdt
T

    (4) 

where avP  is the average power extracted, F  is the damper force, z is the average velocity of the 

damper and T  is the simulation duration. However, the damping element of interest here is the non-

linear cubic damping where 3

3F c z  . This implies 

 
0

3
3

1
( )

T

avP c z zdt
T

    (5) 

 

Assuming harmonic response with ( ) ( )z t Zsin t , Eq. (5) can be written as 

 4 4

3

3

8
avP c Z   (6) 

 

Recall that the relative displacement of the VEH is constrained by its physical enclosure hence the 

maximum average power, maxP that can be extracted is a function of the maximum relative displace-

ment, maxZ and the nonlinear cubic damping parameter 3c . 

The next section briefly discusses the OFRF concept and afterwards an explicit polynomial is 

derived showing an analytical relationship between the output frequency response of the average 

power of the VEH and the parameter of interest to be designed, 3c . 

 

3. System analysis, design and optimisation 

In this section, the OFRF of the relative displacement of the proof mass is initially derived from 

the system model of Eq. (1) which is subsequently used to derive the OFRF of the harvested power. 

A more efficient numerical method of determining the OFRF is briefly reviewed here however an 

extensive analytical discussion of the OFRF concept has been done in [6, 7]. 

Given the Volterra system described by the differential equation in Eq. (7) 

 

 
1

1

1 0 , 0 1 1

( , ) 0
( ) ( )

p q

i i

i i

M m K

pq p q

m p k k

k kp p q

k k
i i p

c k k
d z t d u t

dt dt




  



  

      (7) 

 

M  is the maximum degree of nonlinearity and K  is the maximum order of the derivative in terms 

of ( )z t  and ( )u t  . Also, the model parameters 
0,1 1,0

and( ) ( )c c    are denoted as linear parameters, 

equivalent to the model linear parameters. The OFRF representation of Eq. (7) is derived in the form 

 

 
2 3 1

0 1 2 3 1( ; ) N N

N NZ j c c c c c c      

              (8) 

which can be written as 

 ( ; ) ( )TZ j c j    (9) 
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where ( ) Nj j j j j                    is a set of complex-valued functions and

2 3 1[1, , , , ]N Nc c c c c  is a set of design parameters otherwise known as the structure or monomi-

als of the OFRF. The set of monomials can be obtained using the algorithm as employed in [6-8]  

 
1

N

n

n

M


    (10) 

where  

 
1 1

1

1

0 1 1 ,

,..., 0 1 1 ,..., 0

0 1 ,
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n
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n n n pq p q n q p

k k q p k k

n K

p p q n p

p k k

M c k k c k k M

c k k M



 

   



 

   
    
      

 
 

  

  (11) 

  

   and 

 
1

, , 1 1

1

1( ) , and [1]
n p

n p i n i p n n

i

M M M M M M
 

 



      (12) 

 

3.1 Numerical determination of the OFRF for the harvested power 

The system model in Eq. (3) is analysed and the following analysis has been done using the system 

parameters, 2 3 3
11kg, 4 , 0.01Ns /m , 0.4cmm k c Y . It is observed that the model of Eq. (3) be-

longs to the class of systems of Eq. (7) with 2 and 3K M  . Therefore the system parameters can 

be obtained as 10 10 1 30 3 10(2) (1) (3) (0), , , ,c m c c c c c k 01(0) 1c  other parameters being zero. 

The set of monomials with respect to the system output response ( )Z j  is computed using Eq. (10), 

Eq. (11) and Eq. (12) as  

 
23

2 3 9 10 11

3 3 3 3 3 3

1

[1, , , , , , ]n

n

M c c c c c c


     (13) 

The set of complex-valued function ( )j  is obtained as detailed in [6, 7] using twenty one (21) 

sequence of values for the nonlinear damping coefficient 3 [0 : 0.0005 : 0.01]c  . This range of values 

is chosen as the OFRF model training parameters.  

 

 

3

3

3

11
3

3 3

11
3 3 3

11
3 3 3

(1)

(2)1

(21)

1 (1) (1)

1 (2) (2)
, where

1 (21) (21)

( ; ) |

( ; ) |
( ) ( )

( ; ) |

c

cT T

c

c c

c c

c c

Z j c

Z j c
j

Z j c






   





   
   
   

   
   
   
    

    (14) 

 

 and  0 1 6 12( ) [ ( ), ( ), , ( ), ( )]j j j j j           

 

Therefore the OFRF polynomial of the relative displacement is computed as 

 

 9

3

2 10 11
3 3 3 3 3 0 1 9 10 11( ; ) [1, , , , , , ] [ ( ), ( ), , ( ), ( ), ( )]TcZ j c c c c c j j j j j             (15) 

or  

 2 9 10 11
3 0 3 1 3 2 3 9 3 10 3 11( ; ) ( ) ( ) ( ) ( ) ( ) ( )Z j c j c j c j c j c j c j                          (16) 

 
2

3( ; )Z j c can be obtained using the algorithm in [8]. This is computed as 
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2

3 3 3( ; ) ( ; ) ( ; )Z j c Z j c Z j c       (17) 

 

2 * *
3 0 0

1 0
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2

3 3

0
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l
l

i l i

l i

i
i

i

Z j c c l

Z j c c P
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





 



 
 
 
 

  



 



  (18) 

where
iP  is the resulting coefficient of the OFRF polynomial of 

2

3( ; )Z j c   

This algorithm is also employed in obtaining 
4

3( ; )Z j c  which is computed as 

 

 
4

3

44

3

0

( ; ) i
i

i

Z j c c Q



   (19) 

where iQ  are the resulting coefficients of the OFRF polynomial of 
4

3( ; )Z j c . 

 

In Eq. (6), the extracted power was obtained as 4 4

3

3

8
avP c Z  which can be written as  

 
44

3 3

3
( ; )

8
avP c Z j c    (20) 

Substituting Eq. (19) in Eq. (20), 

 
44

1

3

0

i

av i

i

P c Q 



    (21) 

43
where

8
    

Equation (21) shows a univariate polynomial system (OFRF of the harvested power) as a function 

of the nonlinear damping parameter, 3c . Using the computed OFRF polynomial, an optimal value of 

3c  can be designed for any desired VEH power. This can be done by finding the minimum real roots 

of the polynomial given any desired harvester power. Furthermore, the damping parameter required 

to harvest the maximum power is obtained by finding the zeros of the derivative of Eq. (21). This is 

computed as 

 

 3

03

( 1) ( ) 0
R

iav
i

i

dP
i c Q

dc




       (22) 

 

The minimum, non-negative real root [9] of the polynomial in Eq. (22) was computed as 

3 0.0025
nop

c   for the non-optimised (nop) system and substituting this value in Eq. (19) and Eq. (21) 

gives
2

3( ; ) 2.863 10 ( ) and 81.56avZ j c m P mW     respectively. This solution is valid for an un-

constrained VEH system however most practical VEH systems are constrained in 3( ; )Z j c . This 

poses a nonlinear optimisation problem for a constrained nonlinear univariate polynomial system. 

 

 

3.2 Optimisation of a constrained nonlinear univariate polynomial  

The optimization of a polynomial function is usually subject to a polynomial equality and/or ine-

quality constraints [10] and the optimization problem can be written as 
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3

3

3

max ( )

s.t. ( ; ) 0

avP c

Z j c

c

  (23) 

where  3
( )avP c  is the objective function univariate in 3c . 

3( ; ) 0Z j c  is the inequality con-

straint and 3c   is the design variable. ,maxZ maximum relative displacement attainable by the 

VEH. 

 

For this study, 2 ( )2.5 10 m is chosen and Eq. (23) was evaluated using the MATLAB fmincon 

function with a set of lower and upper bounds, a and b respectively defined on the design variable, 

3
c . Therefore the solution is always in the range 3

a c b  where 0 and 0.01a b . The optimal 

solution was obtained as 3 3

3
78.94 when 0.00453 /

opt
avP mW c Ns m and the corresponding relative 

displacement obtained is 2
3( ; ) 2.446 10 ( )Z j c m    . 

 

In the next section, simulation studies are carried out and the effects of the nonlinear damping 

coefficient on the relative displacement and the average power harvested by the VEH are shown for 

both analytical (OFRF) and numerical cases.  

 

4. Simulation studies 

In this section, simulation results are shown and discussed for the unconstrained (not optimized) 

and constrained (optimized) cases. Figure 2 shows the amount of power harvested as a function of 3c  

. The average power harvested under unconstrained and constrained conditions are clearly identified.  

 

 
 

Figure 2: Effect of nonlinear cubic damping on the average power harvested by the VEH. 
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Figure 3 shows the effect of the nonlinear damping on the VEH relative displacement. Also, it is 

seen that the VEH displacement achieved using 3c  obtained from the OFRF polynomial at maximum 

power subject to unconstrained conditions far exceeds 22.5 10 ( )maxZ m   of the VEH system. 

However when the constraint is considered, the optimized damping parameter obtained, 3opt
c achieves 

a Z  value that meets the constraint. 

 

 
 

Figure 3: Effect of nonlinear cubic damping on the VEH relative displacement  
 

It should be noted that using Eq. (18), for
2

3( ; ) 2.5 10 ( )Z jw c m  , the corresponding damping pa-

rameter computed is 
3 3

3 0.004184( / )c Ns m  which differs from the optimised value. Therefore, it is ex-

pected that due to the high order of the OFRF polynomial, some numerical errors are likely to occur particularly 

if the VEH system output is not well represented by the OFRF polynomial. 
 

 
 

Figure 4: Relative displacement of the VEH system obtained under unconstrained (not optimized) 

and constrained (optimized) conditions 
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Figure 4 shows the time domain graph of the relative displacement obtained by the VEH system 

subject to unconstrained (not optimized) and constrained (optimized) conditions. The optimized 

graph is seen to meet the system constraints. 

 

5. Conclusion 

 

The application of nonlinear cubic damping has been revealed in the literature to extend the energy 

(power) harvested by a vibration-based energy harvester. However, this study focused on the appli-

cation of a nonlinear frequency analysis method, the OFRF, in the analysis, design and optimization 

of a VEH system. It was shown that a VEH system can be modelled and analysed using the OFRF 

technique and with the polynomials obtained, a nonlinear cubic damping parameter can be designed 

for any desired energy (power) level. This is so as when a desired power level is specified, the OFRF 

is transformed to a univariate decreasing order polynomial. The required damping parameter is ob-

tained by computing the minimum non-negative real roots of the polynomial. This is also applicable 

for predicting the corresponding VEH relative displacement achieved by the designed damping pa-

rameter. However, since most practical VEH systems are designed to attain a maximum relative dis-

placement, a design constraint is introduced.  

It was revealed that with the OFRF polynomials derived for the harvester power and VEH relative 

displacement, an optimization problem is easily posed and for this problem, an optimal solution was 

obtained for the VEH system. This solution is slightly short of the expected solution as it is expected 

that for high order polynomials, some numerical errors are bound to occur especially if the system 

model of interest is not well represented by its OFRF polynomial.    
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